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Abstract

The multiplication of a sparse matrix by a dense vector is a center-
piece of scientific computing applications: it is the essential kernel for
the solution of sparse linear systems and sparse eigenvalue problems by
iterative methods. The efficient implementation of the sparse matrix-
vector multiplication is therefore crucial and has been the subject of an
immense amount of research, with interest renewed with every major
new trend in high performance computing architectures. The intro-
duction of General Purpose Graphics Programming Units (GPGPUs)
is no exception, and many articles have been devoted to this problem.

In this report we propose three novel matrix formats, ELL-G and
HLL which derive from ELL, and HDIA for matrices having mostly
a diagonal sparsity pattern. We compare the performance of the pro-
posed formats to that of state-of-the-art formats (i.e., HYB and ELL-
RT) with experiments run on different GPU platforms and test matri-
ces coming from various application domains.

*This Technical Report has been issued as a Research Report for early dissemination
of its contents. No part of its text nor any illustration can be reproduced without written
permission of the Authors.



1 Introduction

The topic we are about to discuss is focused on a single, apparently very
simple, computational kernel: it is perhaps appropriate therefore to explain
why we should care enough about sparse matrix-vector multiplication to
devote an entire article to it. Moreover, the opening statement begs the
obvious question of what do we mean by sparse matrix.

The most famous definition of “sparse matrix” is attributed to James
Wilkinson, one of the founding fathers of numerical linear algebra [11]:

Any matrix with enough zeros that it pays to take advantage
of them.

A more rigorous definition may be stated by (implicitly) referring to a class
parametrized by the dimension n:

A matrix A € R™*" ig sparse if the number of nonzero entries

is O(n).

This means that the average number of nonzero elements per row (per col-
umn) is bounded independently of the number of rows (columns).

It is not immediately obvious that sparse matrices should exist, let alone
be very frequent in practice. To prove that this is indeed the case, let us
consider the problem of solving a partial differential equation (PDE), that
is, an equation involving a function and its derivatives on a certain domain
in space and/or time. In most cases, such an equation does not have a closed
form solution; it is then necessary to employ a discretization technique to
solve the equation numerically. To build such a discretization we can for
instance choose a discrete set of points at which we evaluate the unknown
function, while at the same time approximating its derivatives using those
same function values. If we do this for a one-dimensional PDE such as
u”(x) = f(x) on the unit interval,

u'(z) = f(x), 0<z<1,
u0) = a, u(l)=4p;
if we define a set of points z; = jh, h = 1/(m + 1), we can approximate the

unknown function u(x) with the samples {Uy = o, Uy, ..., Upn, Unt+1 = B};
in the same vein we can approximate the second derivative with the formula

1

2
u'(z5) & D*Uj = 15 (U1 = 2U; + Uj),
thus obtaining a system of simultaneous linear equations:

1 .
ﬁ(Uj—1 —2Uj + Ujta) = f(zj), j=12,....m.



Independently of the size m, each equation will have no more than three
nonzero coefficients; for a two-dimensional problem we might have five co-
efficients, and so on. This is a general feature of most methods for solving
differential equations, including finite differences, finite elements, and finite
volumes [26, 35, 33]. On closer inspection, this follows from the fact that dif-
ferential operators are inherently local operators: from the form of the equa-
tion we expect that at any given location the solution will directly “feel” only
the influence of what is going on in the immediate neighbourhood. Thus,
most problems of mathematical physics require in their solution handling
of sparse matrices; far from being unusual, sparse matrices are extremely
common in scientific computing, and the related techniques are extremely
important.

Having O(n) nonzeros means that with the appropriate representation
sparse matrices occupy O(n) memory locations; therefore it becomes pos-
sible to tackle much larger problems with the same resources with respect
to standard matrices occupying O(n?) memory, and thus enabling better
modeling of physical phenomena.

What we have seen so far justifies the study of special storage formats for
sparse matrices, but still leaves open the question of why the matrix-vector
product is the computational kernel of choice. This fact is due to the usage
of iterative methods for the solution of the linear algebra problems resulting
from the discretization of the differential equations. Gaussian elimination is
a very well known, simple, reliable and performant method, and its imple-
mentation is available in the de-facto standard LAPACK and ScaLAPACK
libraries [1, 6]. Unfortunately, there is a major drawback: Gaussian elim-
ination destroys the sparsity structure of a matrix by introducing fill-in,
that is, new nonzero entries in addition to those already present in the orig-
inal matrix. Thus, memory requirements grow, and the matrices become
unmanageable. Similar considerations apply to the computations of eigen-
values and eigenvectors via the QR algorithm.

When sparse problems are concerned, the solution methods of choice are
currently those based on the so called Krylov subspace projection meth-
ods. The most famous such method is the celebrated Conjugate Gradients
method, originally proposed in 1952 [21]; pseudo code for the Conjugate
Gradients is shown in Alg. 1.1.

Detailing the mathematical properties of the Conjugate Gradients or
indeed of any other Krylov projection method is beyond the scope of this
paper; a thorough discussion may be found in [36, 23, 20]. From a software
point of view, we note that all Krylov methods employ the matrix A only
to perform matrix-vector products y < Ax; as such, they do not alter the
nonzero structure and memory requirements.

Thus the sparse matrix-vector product is the key computational kernel
for many scientific applications; indeed it is one of the “Seven Dwarfs”, a
set of numerical methods essential to computational science and engineer-



Algorithm 1.1 The Conjugate Gradients method for symmetric positive
definite systems
1: Choose a starting guess zg
2: Set rg < b — Axg and pg < rg
3: for 5 = 0,1, ... until convergence do
a; < (r5,75)/(Apj, pj)
Tjt+1 < Tj + ojp;
Check convergence
Tj41 <15 — OéjApj
Bj = (rjr1,mi41)/ (15, 75)
9 pjt1 < i+ Bipy
10: end for

ing [8, 41, 16]. The issues and techniques for efficient implementation of the
“Seven Dwarfs” have driven the development of software for high perfor-
mance computing environments over the years.

The SpMV kernel is well-known to be a memory bounded application;
and its bandwidth usage is strongly dependent on both the input matrix
and on the underlying computing platform(s). The story of its efficient
implementations is largely a story of data structures and of their match
(or lack thereof) to the architecture of the computers employed to run the
iterative solver codes. Many research efforts have been devoted to managing
the complexity of multiple data storage formats; among them we refer the
reader to [14] and [19].

Implementation of SpMV on bandwidth-rich computing platforms such
as GPUs is certainly no exception to the general trends we have mentioned;
issues to be tackled include coalesced memory accesses when reading of
the matrix, fine-grain parallelism, including load balance amongst threads,
overhead associated with auxiliary information, and so on.

Graphics Processing Units (GPUs) are today an established and attrac-
tive choice in the world of scientific computing, found in many among the
fastest supercomputers on the Top 500 list, and even being offered as an
infrastructure service in Cloud computing such as Amazon EC2. The GPU
cards produced by NVIDIA are today among the most popular computing
platforms; their architectural model is based on a scalable array of multi-
threaded streaming multi-processors, each composed by a fixed number of
scalar processors, a set of dual-issue instruction fetch units, one on-chip
fast memory partitioned into shared memory and L1 cache plus additional
special-function hardware. Each multi-processor is capable of creating and
executing concurrent threads in a completely autonomous way, with no
scheduling overhead, thanks to the hardware support for thread synchro-
nization. In addition to the primary use of GPUs in accelerating graph-
ics rendering operations, there has been considerable interest in exploiting



GPUs for General Purpose computation (GPGPU) [27]. A large variety of
complex algorithms can indeed exploit the GPU platform and gain signif-
icant performance benefits (e.g., [2, 22, 40]). For graphics cards produced
by NVIDIA, the programming model of choice is CUDA [31, 37]; a CUDA
program consists of a host program that runs on the CPU host, and a kernel
program that executes on the GPU itself. The host program typically sets
up the data and transfers it to and from the GPU, while the kernel program
performs the main processing tasks.

With their advanced Single Instruction, Multiple Data (SIMD) archi-
tecture, GPGPUs appear good candidates for scientific computing appli-
cations, and therefore they have attracted much interest for operations on
sparse matrices, such as the matrix-vector multiplication; many researchers
have taken interest in the SpMV kernel, as witnessed for example by the
works [3, 4, 7, 10, 25, 29, 34, 38], and the development of CUSP [9] and
NVIDIA’s cuSPARSE [32] libraries.

Implementation of SpMV on computing platforms such as GPUs is cer-
tainly no exception to the general trends we have mentioned. The main issue
with the SpMV kernel on GPGPUs is the (mis)match between the SIMD
architecture and the irregular data access pattern of many sparse matrices;
hence, the development of this kernel revolves around devising data struc-
tures acting as “adapters”.

We will begin in Section 2 by an overview of traditional sparse storage
formats, detailing their advantages and disadvantages in the context of the
SpMYV kernel. In Section 3 we will formulate our proposal for three stor-
age formats and their implementation on GPUs: ELL-G, HLL-G, HDIA-G.
Our formats are available in the framework of PSBLAS [19], allowing for
flexible handling of multiple storage formats in the same application [5].
Section 4 provides a discussion of performance data on different GPU mod-
els, highlighting the complex and sometimes surprising interactions between
matrices, data structures and architectures. Section 5 closes the paper and
outlines future work.

2 Storage Formats for Sparse Matrices

Let us return to the sparse matrix definition by Wilkinson:

Any matrix with enough zeros that it pays to take advantage
of them.

This definition implicitly refers to some operation in the context of which we
are “taking advantage” of the zeros; experience shows that it is impossible
to exploit the structure of the sparse matrix in a way that is uniformly good
across multiple operators, let alone multiple computing architectures. It is
therefore desirable to have a flexible framework that allows to switch among
different formats as needed; these ideas are further explored in [5, 19].



In normal two-dimensional array storage there is a one-to-one mapping
between the index pair (I,J) of a matrix coefficient and its position in
memory relative to the starting address of the vector. In languages like
Fortran and Matlab the coefficients are stored in a linear array in memory
in column-major order starting from index 1, so that in an M x N matrix,
the element (1, .J), with constraints 1 < I < M and 1 < J < N, is stored at
position (J —1) x M + I. In languages like C and Java, the coefficients are
stored in row-major order starting from index 0, so that the (I, .J) element,
with constraints 0 < I < M and 0 < J < N, is stored at position I x N + J.
In both cases the mapping between the indices and the position is well-
defined and algorithmically very simple: representing a matrix in memory
requires one linear array, a predefined ordering of elements and two integer
values detailing the size of the matrix.

Now enter sparse matrices: “taking advantage” of the zeros essentially
means avoiding their explicit storage. But this means that the simple map-
ping between the index pair (I,.J) and the position of the coefficient in
memory is destroyed. Therefore, all sparse matrix storage formats are de-
vised around means of rebuilding this map using auxiliary information: a
pair of dimensions does not suffice any longer. How costly this rebuilding is
in the context of the operations we want to perform is the critical issue we
need to investigate. Indeed performance of sparse matrix kernels is typically
much less than that of their dense counterparts precisely because of the need
to retrieve index information, and because of the associated memory traffic.

By now it should be clear that the performance of sparse matrix com-
putations depends critically on the specific representation chosen. Multiple
factors contribute to determine the overall performance:

e the match between the data structure and the underlying computing
architecture, including the possibility of exploiting special hardware
instructions;

e the amount of overhead due to the explicit storage of indices;

e the amount of padding with explicit zeros that may be necessary in
some cases.

Many storage formats have been invented over the years; a number of at-
tempts have also been directed at standardizing the interface to these data
formats for convenient usage (see e.g., [14]).

We will now review three very simple and widely-used data formats: CO-
Ordinate (COQ), Compressed Sparse Rows (CSR), and Compressed Sparse
Columns (CSC). These three formats are probably the closest we can get to
a “general purpose” sparse matrix representation. We will describe the stor-
age format and the related algorithms in a pseudo-Matlab notation, which
can be easily translated into either Fortran or C. Throughout this section
we will refer to the notation introduced in Table 1.



Table 1: Notation for parameters describing a sparse matrix

Name

Description

M

N

NZ
MAXNZR
NDIAG
AS

IA

JA

IRP

NZR
OFFSET

Number of rows in matrix

Number of columns in matrix
Number of nonzeros in matrix
Number of nonzeros in the longest row
Numero of nonzero diagonals
Coefficients Array

Row Indices Array

Column Indices Array

Row Start Pointers Array

Number of Nonzeros per row array
Offset for diagonals

\

322
R Y

Figure 1: Example of sparse matrix

2.1 COOrdinate

The COO format is a particularly simple storage scheme, defined by the
three scalars M, N, NZ and the three arrays IA, JA and AS. By definition of
number of rows we have 1 < TA(i) < M, and likewise for the columns; a

graphical description is given in Figure 2.

Algorithm 2.1 Matrix-Vector product in COO format

for i=1l:nz
ir = ia(i);
je = ja(i);
y(ir) = y(
end

ir) + as(i)*x(jc);

The code to compute the matrix-vector product y = Ax is shown in
Alg. 2.1; it costs five memory reads, one memory write and two floating-
point operations per iteration, that is, per nonzero coefficient. Note that
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Figure 2: COO compression of matrix in Figure 1

the code will produce the result y even if the coefficients and their indices
appear in a random order inside the COO data structure.

2.2 Compressed Sparse Rows

The CSR format is perhaps the most popular sparse matrix representation.
It explicitly stores column indices and nonzero values in two arrays JA and
AS and uses a third array of row pointers IRP, to mark the boundaries of
each row. The name is based on the fact that the row index information
is compressed with respect to the COO format, after having sorted the
coefficients in row-major order. Figure 3 illustrates the CSR representation
of the example matrix shown in Figure 1.

asarrAY | O/@0C 00 %@ -
JAARRAY |12 /8|1/3/9|2/8

Yo

IRP ARRAY 114|7/10/14)---

Figure 3: CSR compression of matrix in Figure 1

The code to compute the matrix-vector product y = Ax is shown in
Alg. 2.2; it costs three memory reads and two floating-point operations per
nonzero coefficient, plus three memory reads and one memory write per row.

2.3 Compressed Sparse Columns

Finally, the CSC format is similar to CSR except that the matrix values are
first grouped by column, a row index is stored for each value, and column
pointers are used.



Algorithm 2.2 Matrix-Vector product in CSR. format

for i=1m
t=0;
for j=ir
t =1t
end
y(i) = t;
end

This format is used by the UMFPACK sparse factorization package [12],
although it is less common for iterative solver applications.

2.4 Storage Formats for Vector Computers

The previous data formats can be thought of as “general-purpose”, at least
to some extent, in that they can be used on most computing platforms with
little or no changes. Additional (and somewhat esoteric) formats become
necessary when moving onto special computing architectures if we want to
fully exploit their capabilities.

Vector processors were very popular in the 1970s and 80s, and their
tradition is to some extent carried on by the various flavours of vector ex-
tensions available in x86-like processors from Intel and other manufacturers.
Many formats were developed for vector machines, including the diagonal
(DIA), ELLPACK (or ELL) and Jagged Diagonals (JAD) formats. The
main issue with vector computers is to find a good compromise between the
introduction of a certain amount of “regularity” in the data structure to
allow the use of vector instructions and the amount of overhead entailed by
this preprocessing.

The ELLPACK/ITPACK format (shown in Figure 4) in its original con-
ception comprises two 2-dimensional arrays AS and JA with M rows and
MAXNZR columns, where MAXNZR is the maximum number of nonzeros in any
row [24]. Each row of the arrays AS and JA contains the coefficients and
column indices; rows shorter than MAXNZR are padded with zero coefficients
and appropriate column indices (e.g. the last valid one found in the same
row).

The code to compute the matrix-vector product y = Ax is shown in
Alg. 2.3; it costs one memory read and one write per outer iteration, plus
three memory reads and two floating-point operations per inner iteration.
Unless all rows have exactly the same number of nonzeros, some of the
coefficients in the AS array will be zeros; therefore this data structure will
have an overhead both in terms of memory space and redundant operations
(multiplications by zero). The overhead can be acceptable if:

1. The maximum number of nonzeros per row is not much larger than
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Figure 4: ELLPACK compression of matrix in Figure 1

Algorithm 2.3 Matrix-Vector product in ELL format

for i=1mm
t=0;
for j=I1:maxnzr
t =1t + as(i,j)sx(ja(i,j));
end
y(i) = t;
end

the average;

2. The regularity of the data structure allows for faster code, e.g. by
allowing vectorization, thereby offsetting the additional storage re-
quirements.

In the extreme case where the input matrix has one full row, the ELLPACK
structure would require more memory than the normal 2D array storage.

A popular variant of ELLPACK is the JAgged Diagonals (JAD) format.
The basic idea is to preprocess the sparse matrix by sorting rows based on
the number of nonzeros; then, an ELLPACK-like storage is applied to blocks
of rows, so that padding is limited to a given block. On vector computers
the size of the block is typically determined by the vector register length of
the machine employed.

The DIAgonal (DIA) format (shown in Figure 5) in its original con-
ception comprises a 2-dimensional array AS containing in each column the
coefficients along a diagonal of the matrix, and an integer array OFFSET that
determines where each diagonal starts. The diagonals in AS are padded with
ZEeros as necessary.

The code to compute the matrix-vector product y = Ax is shown in
Alg. 2.4; it costs one memory read per outer iteration, plus three memory
reads and two floating-point operations per inner iteration. The accesses to
AS and x are in strict sequential order, therefore no indirect addressing is
required.

10
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Figure 5: DIA compression of matrix in Figure 1

Algorithm 2.4 Matrix-Vector product in DIA format

for j=1:ndiag
if (offset(j) > 0)

irl = 1; ir2 =m — offset(j);
else

irl =1 — offset(j); ir2 = m;
end

for i=irl:ir2
y(i) = y(i) + alphaxas(i,j)*x(i+offset(j));
end
end

3 Three Formats for Sparse Matrices on GPGPUs

The implementation of SpMV on GPGPUs bears both similarities and dif-
ferences with other high performance architectures, especially vector com-
puters. We have to accommodate for the coordinated action of multiple
threads in an essentially SIMD fashion; however, we have to make sure that
many independent threads are available. The number of threads that ought
to be active at any given time to exploit the GPU architecture is typically
much larger than the vector lengths of vector computers.

Performance optimization strategies moreover reflect the different poli-
cies adopted by CPU and GPU architectures to hide memory access latency.
The GPU does not make use of large cache memories: rather it exploits the
concurrency of thousands of threads whose resources are fully allocated and
whose instructions are ready to be dispatched on a multiprocessor.

The main optimization issue to support a GPU target then revolves
around how an algorithm should be implemented to take advantage of the
full throughput of the device.

The GPU uses different pipelines (modeled as groups of units on a mul-
tiprocessor) to manage different kind of instructions, and so it has different
instruction throughputs. A basic arithmetic instruction (for example a float-
ing point ADD) will run in parallel with a memory load request issued by

11



another warp in the same clock cycle on the same multiprocessor. Therefore,
to ensure best performance we need to optimize the bottleneck caused by
the slowest set of instructions running on the same group of units. There
are essentially three types of pipeline that can be replicated on the same
GPU multiprocessor:

e a pipeline for groups of floating-point and integer units;

e a pipeline for groups of special function units (used for certain special-
ized arithmetic operations);

e a pipeline for groups of load/store units.

It is therefore pointless to speed up the arithmetic instructions of a given
kernel if its performance is limited by the memory accesses; in such a case
we need to concentrate on the efficiency of read and write requests to mem-
ory. This is the case for the sparse matrix-vector kernel, where the amount
of arithmetic operations is usually comparable with the access requests in
global memory (having a significantly lower throughput than the ALUs).

In this section, we will present a set of sparse matrix formats that were
designed to maximize the performance of the sparse matrix multiply routine
on the GPU architecture.

3.1 GPU ELLPACK

A major issue in programming a sparse matrix-vector product on a GPU is
to make good use of the memory access features of the architecture; we need
to maximize the regularity of memory accesses to ensure coalesced accesses.
Therefore, we experimented with the ELLPACK format, since it provides a
regular access pattern to read the sparse matrix values and one of the input
vectors, using coalesced accesses on NVIDIA GPUs, provided that we choose
a memory layout for arrays that ensures their alignment to the appropriate
boundaries in memory. For all NVIDIA GPU models currently available,
128 bytes is a good alignment choice.

In this scheme the matrix coefficient accesses are coalesced if every thread
reads a given row and therefore computes one of the resulting elements.
The regularity of the data structure guarantees a proper alignment between
memory accesses for consecutive rows. In general, not all rows have the same
number of nonzero elements: the ELLPACK format introduces padding with
zero coeflicients to fill unused locations of the elements array.

In vector processors the execution of arithmetic operations on the padding
zeros was forced by the need to employ vector instructions. In the GPU im-
plementation this is not the case; a better solution is to create an additional
array of row lengths, so that each thread will only execute on the actual
number of nonzero coefficients within the row, at the cost of one more mem-
ory access. The various threads composing a warp can easily handle this

12



optimization. This solution combines the efficiency of arithmetic of CSR
storage with the regular memory occupancy per row implied by the usage
of 2-dimensional arrays. Other researchers have used a similar solution, for
instance in the ELLPACK-R format described in [38].

Algorithm 3.1 Matrix-Vector product in ELL-G format

function y=spMV(as,ja ,nzr,x)
idx = threadldx + blocklIdxx*blockSize;

for i=1l:nzr(idx)
ind = ja(idx, 1i);

val = as(idx, 1i);

res = res + valxx(ind)
end
y(idx) = res;

The pseudo-code to compute the matrix-vector product y = Ax is shown
in Alg. 3.1; the code is written taking into account the memory layout of
Matlab and Fortran, that is, in column-major order. In C and CUDA arrays
are interpreted in row-major order, which means that if we keep the same
physical layout of data in memory the accesses to the arrays from C would
appear as jal[i,idx]. Memory accesses to the array x are implemented
making use of the texture cache provided by the NVIDIA’s GPU architec-
ture. Such an implementation may still be inefficient when the indices of the
nonzero elements are widely separated through the row, so that we cannot
take advantage from the caching values from array x.

One additional advantage of the use of a row-length array is that we
know in advance the number of iterations in the inner loop so that we can
employ optimizations such as loop unrolling and prefetching.

Finally, note that it is possible to allocate two or more threads per row.
This is somewhat similar to what is done in ELLPACK-R [38]; however our
implementation does not change the data structure to reflect the usage of
more threads. In our experience we found that it is quite rare for 2 threads to
give a tangible improvement, and practically it never happens for 4 threads;
for this technique to give an advantage the matrix must have very densely
populated rows, as reported in the experiments of Sec. 4. The complete
kernel for the single precision spMV routine in ELL-G format is shown in
Alg. 3.2;

To enhance numerical precision on older GPU architectures (compute
capability 1), we replace single precision floating-point multiplication and
addition operations with the __fadd_rn and __fmul rn CUDA intrinsics to
prevent the compiler from truncating intermediate results when generating
MAD (multiply + add) instructions.

13



Algorithm 3.2 Kernel for matrix-vector product in ELL-G format

#define THREADBLOCK 128

// Operation is y = alphaxAzt+betaxy

// x and y are wvectors

// ¢cM is the elements array

// TP is the column pointer array

// rS is the mnonzero count array

// m is the number of rows

__global__ void

Sspmvm_gpu_unroll_2_krn (float x*y,float alpha,
float+ cM,intx rP,intx rS,int n,
int pitch,float *x,float beta)

int i=threadldx.x+blockIdx .x+*THREAD BLOCK;
if (i >= n) return;

float y_prod = 0.0f;
int row_size = rS[i];

rP +=1i; M += 1i;

for (int j = 0; j < row.size / 2; j++)
{

int pointers [2];

float values|[2];

float fetches [2];

// Prefetching pointers and vector values

pointers [0] = rP[0];

fetches [0] = tex1Dfetch(x_tex, pointers [0]);
pointers[1] = rP[pitch];

fetches [1] = tex1Dfetch(x_-tex ,pointers[1]);
values [0] = cM[0]; values [1] = cM[pitch];
cM += 2xpitch; rP += 2xpitch;

y-prod += values [0]* fetches [0];
y-prod += values[1]*fetches [1];

}

// odd row size

if (row_size % 2) {

int pointer = rP[0];

float fetch = tex1Dfetch(x_-tex ,pointer);
float value = cM[0];

y-prod 4= valuexfetch;

}
if (beta = 0.0f)
y[i] = (alpha * y_prod);
else
y[i] = betaxy[i] + alphaxy_prod;
}

14



3.2 Hacked ELLPACK

The hacked ELLPACK (HLL) format alleviates the main problem of the
ELLPACK format, that is, the amount of memory required by padding for
sparse matrices in which the maximum row length is larger than the average.

The number of elements allocated to padding is [(m * mazNR) — (m *
avgNR) = m * (maxNR — avgNR)] for both AS and JA arrays, where m
is equal to the number of rows of the matrix, mazNR is the maximum
number of nonzero elements in every row and avg/N R is the average number
of nonzeros. Therefore, a single densely populated row can seriously affect
the total size of the allocation.

To limit the padding overhead, in the HLL format we break the original
matrix into groups of rows (called hacks), and then store these groups as
independent matrices in ELLPACK format; a very long row only affects the
memory size of the hack in which it appears. The groups can be option-
ally arranged selecting rows in an arbitrary order; if the rows are sorted by
decreasing number of nonzeros we obtain essentially the JAgged Diagonals
format, whereas if each row makes up its own group we are back to CSR
storage. If the rows are not in the original order, then an additional vec-
tor rldx is required, storing the actual row index for each row in the data
structure.

The multiple ELLPACK-like buffers are stacked together inside a single,
one dimensional array; an additional vector hackOffsets is provided to keep
track of the individual submatrices. All hacks have the same number of rows
hackSize; hence, the hackOffsets vector is an array of (m/hackSize) + 1
elements, each one pointing to the first index of a submatrix inside the
stacked cM /rP buffers, plus an additional element pointing past the end of
the last block, where the next one would begin. We thus have the property
that the elements of the k-th hack are stored between hackOffsets[k] and
hackOffsets[k+1], similarly to what happens in the CSR format.

HACK OFFSET JA ARRAY AS ARRAY
1 OO 11218
7 \ oD 0 11319
: S50 0 21810
3

0000 41710
Figure 6: Hacked ELLPACK compression of matrix in Figure 1

With this data structure a very long row only affects one hack, and
therefore the additional memory is limited to the hack in which the row
appears. Note that if we adopt sequential ordering and choose 1 as the

15



group size, we have no padding and the format becomes identical to CSR;
at the other extreme, if we let the group size grow to n, we have a standard
ELLPACK matrix. In our CUDA implementation the hack size is chosen to
be a multiple of the warp size (32), so that each submatrix has the correct
alignment.

Sorting the rows of the matrix based on rows’ length (populating the
above mentioned rldx vector) may reduce the amount of padding actually
needed, since large rows tend to go together in the same submatrix. However
it also entails the use of permutations in computing the output vector, and
therefore the overall performance may actually worsen.

The resulting data structure has proven to be very effective; over the
whole set of matrices we tested, the allocation size of the resulting storage
is almost the same as the size needed by the CSR format, but the sparse
matrix-vector routine has a performance close to that of the ELLPACK for-
mat, because coefficients and column indices are still accessed with coalesced
reads by each warp. Similar to the ELL-G case, we can also use 2 or more
threads per matrix row, as we will see in Section 4.

The HLL format is similar to the Sliced ELLR-T format [15], where
however no provisions are made for an auxiliary ordering vector.

3.3 Hacked DIA

Storage by DIAgonals is an attractive option for matrices whose coefficients
are located on a small set of diagonals, since they do away with storing ex-
plicitly the indices and therefore reduce significantly memory traffic. How-
ever, having a few coefficients outside of the main set of diagonals may
significantly increase the amount of needed padding; moreover, while the
DIA code is easily vectorized, it does not necessarily make optimal use of
the memory hierarchy. While processing each diagonal we are updating en-
tries in the output vector y, which is then accessed multiple times; if the
vector y is too large to remain in the cache memory, the associated cache
miss penalty is paid multiple times.

The hacked DIA (HDIA) format was designed to contain the amount
of padding, by breaking the original matrix into equally sized groups of
rows (hacks), and then storing these groups as independent matrices in DIA
format. This approach is similar to that of HLL, and requires using an offset
vector for each submatrix. Again, similarly to HLL, the various submatrices
are stacked inside a linear array to improve memory management. The fact
that the matrix is accessed in slices helps in reducing cache misses, especially
regarding accesses to the vector y.

An additional vector hackOffsets is provided to complete the matrix for-
mat; given that hackSize is the number of rows of each hack, the hackOffsets
vector is made by an array of (m/hackSize) + 1 elements, pointing to the
first diagonal offset of a submatrix inside the stacked offsets buffers, plus an
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additional element equal to the number of nonzero diagonals in the whole
matrix. We thus have the property that the number of diagonals of the k-th
hack is given by hackOffsets[k+1] - hackOffsets[k].

HACK OFFSET ‘ O‘FFS‘ET‘ ‘ AS ARRAY
0[——-1[0]1]7] O|®|D
\ BIRED

‘ 1l0[3[5/6]7] [® o [o

o

Figure 7: Hacked DIA compression of matrix in Figure 1

In our CUDA implementation the hack size is chosen to be a multiple of
the warp size (32), so that each submatrix has the correct alignment.

4 Experimental results

To evaluate the storage formats we have chosen a set of test matrices;
some of them were taken from the Sparse Matrix Collection at the Uni-
versity of Florida (UFL) [13], while some were generated from a model
three-dimensional convection-diffusion PDE. Table 2 summarizes the ma-
trices characteristics.

For each matrix, we report the matrix size (M rows) and the number
of nonzero elements (NZ). The sparse matrices we selected from the UFL
collection represent different kinds of real applications including structural
analysis problems, economics, electromagnetism, computational fluid dy-
namics problems, thermal diffusion problems, and optimization problems.
The UFL collection has been previously used in other works regarding SpMV
on GPUs, among them [3, 7, 17, 18, 28, 30]. The UFL collection subset
we selected includes some large sparse matrices (namely, Cube Coup dt0,
StocF-1465, nlpkkt80, and nlpkkt120) i.e., matrices having more than 1
million rows and 12 million nonzero coefficients. Since the irregular access
pattern to the GPU memory can significantly affect performance of GPU
implementations when evaluating larger matrices [10], it is important to in-
clude large sparse matrices in the performance evaluation. This is in our
opinion a limitation of some previously published works on the subject.

The model PDE sparse matrices arise from a three-dimensional convection-
diffusion PDE discretized with centered finite differences on the unit cube.
This scheme gives rise to a matrix with at most 7 nonzero elements per row:
the matrix size is expressed in terms of the length of the cube edge, so that
the case pdel0 corresponds to a 1000 x 1000 matrix. We already used this
collection in [5].
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Table 2: Sparse matrices used in the experiments and their attributes

Matrix name M NZ  Description

cant 62451 4007383

olafu 16146 1015156

af 1 k101 503625 17550675

af 2 k101 503625 17550675

af-3 k101 203625 17550675 Structural analysis problems
af 4 k101 503625 17550675

af 5 k101 503625 17550675

Cube_Coup-dt0 2164760 127206144

ML_Laplace 377002 27689972

besstk17 10974 428650

mac_econ_fwd 206500 1273389  Macroeconomic model
mhd4800a 4800 102252  Electromagnetism

raefsky2 3242 294276

af23560 23560 484256

lung2 109460 492564

StocF-1465 1465137 21005389  Computational fluid dynamics
DKO1R 903 11766  problems

GTO1R 7980 430909

PRO2R 161070 8185136

RMO7R 381689 37464962

FEM_3D_thermall 17880 430740

FEM_3D_thermal2 147900 3489300

thermall 82654 574458

thermal2 1228045 8580313 o
thermomech_dK 204316 28d22g L lermal diffusion problems
thermomech_dM 204316 1423116

thermomech_TC 102158 711558

thermomech_TK 102158 711558

nlpkkt80 1062400 28192672  Optimization problems
nlpkkt120 3542400 95117792  (nonlinear programming)
pde50 125000 860000 Convection—diffusion PDE on
pde60 216000 1490400 the unit cube, 7-point centered
pde80 512000 3545600  differences. The numbers in
pde90 729000 5054400 the name refer to the size of
pdel00 1000000 6940000 the cube edge.

The performance measurements were taken on three different platforms,
whose characteristics are reported in Table 3. Table 4 summarizes the spec-
ifications of the GPUs on such platforms. The experiments were run using
the GCC compiler suite and the CUDA programming toolkit; on platform
1 we used GCC 4.9 (development) and CUDA 5.5, on platform 2 GCC 4.7.2
and CUDA 4.2.9, on platform 3 GCC 4.6.3 and CUDA 6.0.

For all matrices we tested all the formats we have proposed, and we
compare them to the Hybrid format available in the NVIDIA cuSPARSE
library. The hybrid format is documented by NVIDIA to be a mixture of
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Table 3: Test platforms characteristics

Platform CPU GPU

1 AMD Athlon 7750 GTX 285
2 Xeon E5645 M2070

3 AMD FX 8120 GTX 660

Table 4: GPU model specifications

GTX 285 M2070 GTX 660
Multiprocessors 30 14 5
Cores 240 448 960
Clock 1548 MHz 1150 MHz 1033 MHz

DP peak 92.9 GFlop/s 515.2 GFlop/s 82.6 GFlop/s
Bandwidth 162.4 GB/s  150.3 GB/s 144.2 GB/s
Compute capability 1.3 2.0 (Fermi) 3.0 (Kepler)

ELLPACK and coordinate, attempting to overcome the memory overhead
of the full ELLPACK. The CuSPARSE library allows the user to control
the partition of the input matrix into an ELLPACK part and a coordinate
part; for the purposes of our comparison we always used the library default
choice.

Considering the amount of memory employed by the various storage for-
mats, we see that in many cases HLL and HYB achieve a similar occupancy,
with the advantage going either way. For some matrices the ELLPACK
storage format is essentially equivalent to HLL, meaning that the maximum
and average row lengths are very close; this is true for instance of the AF
matrices. The PDE model matrices also have a very regular structure and
similar occupancy between ELL, HLL and HYB; however they also have a
native diagonal structure that makes them natural candidates for the DIA
and HDIA formats. From Table 5 this is also true of FEM_3D _thermal2 (at
least for the HDIA), and of DKO1R/GT01R/PRO2R/RMO7R; many other
matrices do not have a natural diagonal structure and the resulting fill-in
destroys any performance advantage to be gained.

On platform 1 (GTX 285), we see from Table 6 that the HLL and HYB
formats are essentially equivalent in performance. On platform 2 (M 2050)
this is still largely true except for the model PDE problem at large sizes,
but even there the difference is quite small; on platform 3 (GTX 660) the
difference for the model PDE problems is again very small.

For the model PDE matrices, FEM_3D _thermal2 and the nlpkktXX on
platforms 2 and 3 the HDIA format is substantially better than either HLL
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or HYB; it is not quite clear why this does not happen on the older card of
platform 1. It is apparent that a diagonal-based format should not be used
unless there is a natural diagonal structure to the matrix, but this structure
may not be immediately visible. Indeed for the nlp matrices the HDIA
format performs very well, even though the DIA format is unmanageable.

One further set of tests was run to compare our results with ELLR-T [39]
and to assess the viability of using multiple threads per row. On platform 1
we could not run the tests with ELLR-T because the library distributed by
the authors from their web site would not run properly on the GTX 285,
and sources were not available for recompilation. Therefore in Table 9 we
report performance at 1 and 2 threads for both ELL-G and HLL-G formats.
We see that it is very rarely the case that the 2-threads version gains any
advantage, and even when it does, it is only a very slight one. Similar results
on platform 2 are shown in Table 10.

On platform 3 we compare our ELL-G code run with 1 and 2 threads
with the ELLR-T code run with 1, 2 and 4 threads. The results are different
in that there are even less cases where multiple threads are favourable, e.g.,
the af_1.k101 through af 5_k101 matrices show a degradation as opposed to
the slight improvement they had on platform 1. In all cases the performance
of our code is on par or slightly faster than that of the ELLR-T code.

In conclusion we wish to notice that finding the best match between
storage format, matrix structure and computing device is an entirely nonob-
vious proposition, even when confining ourselves to similar devices such as
the NVIDIA GPUs. This means that the flexibility of the PSBLAS object
framework outlined in [19, 5] is instrumental to extract the best performance
in a convenient way, especially when dealing with heterogeneous computing
platforms.

5 Conclusions

In this paper we dealt with the sparse matrix-vector multiplication and its
implementation on GPGPUs. We presented three novel matrix formats:
ELL-G and HLL which both derive from ELL, and HDIA for matrices hav-
ing mostly a diagonal sparsity pattern. We have explored the performance
attainable accounting for variations in the matrix structure, the storage for-
mat and the computing device, and we have shown how it is desirable to
have a flexible framework that enables to switch among various formats at
the user’s choice.

We have so far limited ourselves to storage formats that can be seen, at
least to some extent, as general purpose; in particular, we plan to consider in
future work matrices that have block-entry structures, since those matrices
do not appear in all applications.

Our software is freely available at the web site http://www.ce.uniroma2.
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Table 5: Memory occupancy in MB

Matrix name DIA HDIA ELL HLL HYB
cant 49.5 49.9 58.7 54.9 48
mac_econ_fwd500 844 206 109 56 16.1
olafu 153.4 17.3 17.3 14.3 12.2
raefsky?2 18.8 5.4 4.2 3.7 3.5
af23560 6.2 5.54 6 6 5.9
mhd4800a 2.2 2.2 1.9 1.9 1.2
besstk17 91.6 12.2 19.8 6.9 5.1
lung?2 1318 25 11 10.2 6.3
af_1.k101 3614  233.2 213.5 213.5 212.62
af 2 k101 3614  233.2 213.5 213.5 212.62
af_ 3 k101 3614  233.2 213.5 213.5 212.62
af_ 4 k101 3614  233.2 213.5 213.5 212.62
af_ 5.k101 3614  233.2 213.5 213.5 212.62
FEM_3D_thermall 163 4.2 5.9 5.9 5.2
FEM_3D_thermal2 10744 35.6 4851 48.53 42.5
Cube_Coup_dt0 1098802 3306 1775 901 —
ML_Laplace 14161 334 336 336 333.8
StocF-1465 858380 1606 3329 311 258
thermall 21499 75.1 11.2 8.9 7.2
thermal2 6543314 1210 167 132.1 107.9
thermomech_dK 455211 472 49.8 40 35
thermomech_dM 212576 160 25.3 20.6 17.9
thermomech_TC 106305 157.6 12.7 10.5 8.9
thermomech_TK 106305 157.6 12.7 10.5 8.9
DKO1R 0.245 0.21 0.192 0.191 0.144
GTO1R 12.7 5.1 8.6 6.2 5.2
PRO2R 4973 142.6 178 128 98.8
RMO7R 874967 1206 1352 818 451.1
nlpkkt80 652900 272 361 347 349
nlpkkt120 4897552  888.3 1204 1160 —
pde50 7 7 11 10 10.8
pde60 12.1 12.2 19 18.9 18.7
pde80 28.7 29 45 44.8 44.6
pde90 40.8 41.3 64.1 63.9 63.6
pdel00 56 56.7 88 87.6 87.3
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Table 6: Performance on platform 1 (GFLOPS)

Matrix name DIA HDIA ELL HLL HYB
cant 11.67 12.30 13.24 12,93 12.36
mac_econ_fwd500 — 1.90 5.14 4.55 4.99
olafu 0.92 7.78 14.86 14.50 8.97
raefsky?2 1.96 2.80 7.18 6.98 2.43
af23560 10.95 11.23  14.97 14.02 13.29
mhd4800a 6.64 5.47 6.46 6.06 2.33
besstk17 0.68 4.48 6.72 6.63 5.90
lung?2 — 2.57 8.80 7.98 5.19
af_1.k101 — — 19.51 18.41 18.95
af_2 k101 — — 19.51 1841 18.95
af_3.k101 — — 19.51 18.41 18.95
af_ 4 k101 — — 19.51 18.41 18.95
af_5_k101 — — 19.51 1841 18.99
FEM_3D_thermall 0.61 10.85 12.45 11.84 11.61
FEM_3D_thermal2 — — 13.24 12.81 12.98
Cube_Coup_dt0 — — — — —
ML _Laplace — — 16.07 15.76 1591
StocF-1465 — — — 8.04 10.86
thermall — — 9.28 8.58 6.72
thermal2 — — 8.78 8.83 7.71
thermomech_dK — — 6.14 5.73 5.00
thermomech_dM — — 6.14 5.73 5.00
thermomech_TC — — 8.82 8.34 8.00
thermomech_TK — — 8.47 8.04 7.45
DKO1R 0.83 0.82 1.27 1.14 0.35
GTO1R 6.43 9.48 9.13 8.96 5.37
PRO2R — — 12,67 12,70 12.72
RMO7R — — — — —
nlpkkt80 — — 1725 17.20 17.14
nlpkkt120 — — — — —
pde50 16.58 13.74 15.14 14.12 14.45
pde60 17.23 14.63 16.14 15.34 15.37
pde80 17.94 15.67 17.41 17.61 16.05
pde90 17.67 15.69 16.93 16.59 16.29
pdel00 17.85 15.76 17.19 16.95 16.39
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Table 7: Performance on platform 2 (GFLOPS)

Matrix DIA HDIA ELL HLL HYB
cant 13.63 13.04 11.83 11.59 12.35
mac_econ_fwd500 0.27 1.03 3.53 3.53 4.74
olafu 1.17 7.40 11.04 1049 10.65
raefsky2 2.00 2.92 10.21 10.06 4.89
af23560 11.84 10.73  12.28 12.20 11.94
mhd4800a 5.30 5.11 6.42 5.81 3.65
besstk17 0.80 4.12 7.29 7.16 7.57
lung?2 0.09 3.03 6.58 6.54 5.50
af_1.k101 0.90 12.44 14.15 14.14 15.16
af_2 k101 0.90 12.44 14.15 14.14 15.16
af_3.k101 0.90 12.44 14.15 14.14 15.16
af_ 4 k101 0.90 12.44 14.15 14.14 15.16
af_5_k101 0.90 12.45 14.15 14.14 15.16
FEM_3D_thermall 0.61 12.82 11.37 14.14 13.49
FEM_3D_thermal2 — 15.25 11.56 10.75 13.07
Cube_Coup_dt0 — 6.60 10.56 10.69 —
ML_Laplace — 14.21 14.31 14.24 14.83
StocF-1465 — 2.26 9.40 9.19 10.66
thermall — 1.30 8.17 7.95 6.90
thermal2 — 1.26 7.74 7.64 7.00
thermomech_dK — 0.87 7.88 7.78 7.75
thermomech_dM — 1.31 5.77 5.70 6.08
thermomech_TC — 0.77 5.38 5.35 5.09
thermomech_TK — 0.77 5.38 5.35 5.09
DKO1R 0.61 0.61 2.58 2.47 0.68
GTO1R 7.74 9.91 10.11 9.99 7.70
PRO2R — 9.63 10.48 10.43 10.50
RMO7R — 5.18 8.34 8.44 9.08
nlpkkt80 — 15.62 13.14 13.10 15.05
nlpkkt120 — 15.00 12,97 12,94 14.01
pde50 15.84 14.79 11.83 11.96 12.43
pde60 16.37 15.43 12.02 12.17 12.93
pde80 16.76 16.02 12.05 12.37 13.30
pde90 16.58 16.04 11.94 12.27 13.16
pdel00 16.29 1595 11.78 12.18 13.37
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Table 8: Performance on platform 3 (GFLOPS)

Matrix name DIA HDIA ELL HLL HYB
cant 17.1 16.9 15.34 14.73 14.7
mac_econ_fwd500 0.3 1.3 4.9 4.42 5.6
olafu 1.6 11.3 14.9 13.9 11.96
raefsky2 2.7 4.6 12.6 12.3 4.5
af23560 13.5 15.2 15.2  14.47 14.4
mhd4800a, 5.8 5.8 8.0 7 3.7
besstk17 0.9 6.4 9.45 8.19 7.0
lung?2 0.1 3.8 8.0 7.46 5.1
af_1.k101 — 15.9 18.3 18.1 17.8
af_ 2. k101 — 15.9 18.3 18.1 17.8
af_3_k101 — 15.9 18.3 18.1 17.8
af_ 4 k101 — 15.9 18.3 18.1 17.8
af_5_k101 — 15.9 18.3 18.1 17.8
FEM_3D_thermall 0.7 15.62 14.0 13.65 14.8
FEM_3D _thermal2 19.3 14.6 14.34 15.4
Cube_Coup_dt0 — — — 10.7 —
ML _Laplace — 18.7 18.3 18.44 18.0
StocF-1465 — 2.2 —  12.32 13.7
thermall — 1.7 10.2 9.9 8.5
thermal2 — 1.6 9.27 9.54 8.3
thermomech_dK — 1.1 9.0 10.17 8.4
thermomech_dM — 1.56 6.2 6.6 6.5
thermomech_TC — 0.92 6.36 6.39 6.5
thermomech_TK 0.92 6.36 6.39 6.5
DKO1R 0.7 0.644 2.1 2.07 0.58
GTO1R 13.1 12.0 12.64 8.7
PRO2R — 12.8 13.4 13.74 13.6
RMO7R — 6.9 6.5 12.3 11.0
nlpkkt80 —  21.28 16.7 16.8 16.7
nlpkkt120 — 21.5 16.6 16.7 —
pde50 17.6 17.4 15.0 14.5 14.3
pde60 19.5 18.6 15.5 15 14.7
pde80 19.3 18.43 15.0 14.7 14.9
pde90 18.3 17.6 14.4 14 14.6
pdel00 17.4 17.16 13.7 13.7 13.3
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Table 9: Performance on platform 1, multiple threads (GFLOPS)

Matrix ELL-G HLL-G

threads threads
1 2 1 2
cant 13.24 14.57 12.93 13.92
mac_econ_fwd500 5.14 4.74 4.55 5.15
olafu 14.86 14.29 14.50 13.18
raefsky?2 7.18 11.73 6.98 9.82
af23560 14.97 14.81 14.02 12.10
mhd4800a 6.46 8.07 6.06 6.79
besstk17 6.72 9.64 6.63 8.69
lung?2 8.80 8.53 7.98 6.80
af_1.k101 19.51 20.38 18.41 20.22
af 2.k101 19.51 20.48 18.41 20.22
af_3_k101 19.51 20.48 18.41 20.22
af 4 k101 19.51 20.49 18.41 20.22
af 5.k101 19.51 20.49 1841 20.22

FEM_3D_thermall 1245 11.76 11.84 10.35
FEM_3D_thermal2 13.24 13.78 12.81 13.55

ML _Laplace 16.07 17.54 15.76 17.50
StocF-1465 0.00 0.00 8.04 9.06
thermall 9.28 8.74 8.58 7.45
thermal2 8.78 8.56 8.83 8.10
thermomech_dK 6.14 6.05 5.73 5.62
thermomech_dM 6.14 6.04 5.73 5.62
thermomech_TC 8.82 10.26 8.34 9.37
thermomech_TK 8.47 8.26 8.04 7.40
DKO1R 1.27 1.64 1.14 1.30
GTO1R 9.13 10.89 8.96 9.93
PRO2R 12.67 14.60 12.70 14.40
nlpkkt80 17.25 18.03 17.20 18.45
pde50 15.14 14.34 14.12 11.40
pde60 16.14 14.80 15.34 11.83
pde80 1741 1527 17.61 12.50
pde90 16.93 15.03 16.59 12.63
pdel00 17.19 15.30 16.95 12.72
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Table 10: Performance on platform 2, multiple threads (GFLOPS)

Matrix ELL-G HLL-G

threads threads
1 2 1 2
cant 11.83 1191 11.59 11.92
mac_econ_fwd500 3.53 3.71 3.53 3.69
olafu 11.04 11.34 10.49 11.25
raefsky?2 10.21 12.27 10.06 11.82
af23560 12.28 11.78 12.20 11.36
mhd4800a 6.42 6.20 5.81 5.83
besstk17 7.29 8.24 7.16 8.19
lung2 6.58 5.77 6.54 5.52
af_1.k101 14.15 14.34 14.14 14.35
af_ 2 k101 14.15 14.31 14.14 14.35
af 3.k101 14.15 14.33 14.14 14.35
af_ 4 k101 14.15 14.32 14.14 14.35
af 5.k101 14.15 14.33 14.14 14.35

FEM_3D_thermall 11.37 10.83 10.75 10.47
FEM_3D_thermal2 11.56 11.65 11.32 11.77

ML _Laplace 14.31 14.57 14.24 14.70
StocF-1465 9.40 9.19 9.32 9.03
thermall 8.17 6.96 7.95 6.73
thermal2 7.74 6.86 7.64 6.78
thermomech_dK 7.88 7.29 7.78 7.23
thermomech_dM 5.77 5.42 5.70 5.49
thermomech_TC 5.38 5.16 5.35 5.20
thermomech_TK 5.38 5.16 5.35 5.20
DKO1R 2.58 2.58 2.47 2.46
GTO01R 10.11 9.47 9.99 9.32
PRO2R 10.48 10.09 10.43 10.16
RMO7R 8.34 8.31 8.44 8.41
nlpkkt80 13.14 13.27 13.10 13.21
nlpkkt120 12.97 13.21 1294 13.32
pde50 11.83 8.94 11.96 8.58
pde60 12.02 9.03 12.17 8.72
pde80 12.05 8.96 12.37 8.73
pde90 11.94 854 12.27 8.41
pdel00 11.78 8.35 12.18 8.21
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Table 11: Performance on platform 3, multiple threads (GFLOPS)

Matrix ELL-G HLL-G ELLRT

threads threads threads
1 2 1 2 1 2 4
cant 15.34 16.14 14.73 16.32 15 16.2 16.4
mac_econ_fwd500 4.9 2 4.61 4.44 5 4.5 4.42 4.65
olafu 149 14.37 13.9 14.7 14.2 14.4 14.5
raefsky?2 12.64 15.63 12.3 15.9 9.85 15.12 14.38
af23560 15.23 15.29 14.47 14.87 14.77 14.31 12.56
mhd4800a 8 8.17 7 7.76 7.48 6.7 7.9
besstk17 9.45 10.6 8.19 11 8.5 10.5 11.2
lung2 7.97 7.8 7.46 7 7.5 6.32 5.95
af_1.k101 18.3 18.8 18.1 18.84 18.3 17.6 16.8
af_ 2 k101 18.3 18.8 18.1 18.84 18.3 17.6 16.8
af 3.k101 18.3 18.8 18.1 18.84 18.3 17.6 16.8
af_ 4 k101 18.3 18.8 18.1 18.84 18.3 17.6 16.8
af_5_k101 18.3 18.8 18.1 18.84 18.3 17.6 16.8
FEM_3D_thermall 14 13.7 13.65 13.36 14.33 13.7 12.63

FEM_3D_thermal2 14.6  15.23 14.34 15.2 14.76 14.72 13.8
Cube_Coup-dt0 — 10.7 11.2 10.7 11.51 11.7

ML _Laplace 18.3 19 18.44 19.2 18.6 18.78 17.87
StocF-1465 - - 1232 1250 - - -
thermall 10.2 8.4 9.9 8.6 10 7.6 7.4
thermal2 9.27 7.8 9.54 7.87 9.27 7.2 7.5
thermomech_dK 8.96 8.76 10.17 9.8 8.7 9.16 7.6
thermomech_dM 6.25 5.8 6.6 6.3 6.25 6 6.2
thermomech_TC 6.36 6.5 6.39 6.8 6.7 5.7 6.5
thermomech_TK 6.36 6.5 6.39 6.8 6.7 5.7 6.5
DKO1R 2.1 2.07 2.07 2.07 2.36 2.39 2.34
GTO1R 12.66 12 12.64 12 12 1047 11.63
PRO2R 13.45 13.71 13.74 13.72 13.86 13.63 13.16
RMO7R 6.46 12 12.3  12.25 6.66 6.78 8.2
nlpkkt80 16.65 17.4 16.78 16.9 16.47 15.1  12.17
nlpkkt120 16.63 16.1 16.66 15.59 17 16.6 15.22
pde50 15  11.73 14.5 11 14.53 9.6 8.98
pde60 15.5 11.78 15 10.7 15.02 9.6 8.85
pde80 15 11.58 14.7 10.14 15.18 9.1 8.81
pde90 14.4 11.24 14 10.3  14.78 9.5 8.82
pdel00 13.7 11.2 13.7 10.45 13.7 9.8 8.8
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