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Abstract
Objective. Brain–computer interfaces (BCIs) have the potential to be valuable clinical tools.
However, the varied nature of BCIs, combined with the large number of laboratories
participating in BCI research, makes uniform performance reporting difficult. To address this
situation, we present a tutorial on performance measurement in BCI research. Approach. A
workshop on this topic was held at the 2013 International BCI Meeting at Asilomar
Conference Center in Pacific Grove, California. This paper contains the consensus opinion of
the workshop members, refined through discussion in the following months and the input of
authors who were unable to attend the workshop. Main results. Checklists for methods
reporting were developed for both discrete and continuous BCIs. Relevant metrics are reviewed
for different types of BCI research, with notes on their use to encourage uniform application
between laboratories. Significance. Graduate students and other researchers new to BCI
research may find this tutorial a helpful introduction to performance measurement in the field.

Keywords: brain–computer interface, brain–machine interface, performance measurement,
metrics

(Some figures may appear in colour only in the online journal)

Introduction

Brain–computer interfaces (BCIs), also known as
Brain–machine interfaces, are technologies that allow

11 Present address: Department of Electrical and Computer Engineering,
Kansas State University, Manhattan, KS, USA.

communication and control without requiring muscle
movement [1]. By this definition, BCIs could be used by
individuals with the most severe motor impairments [2–4].
However, while BCI research is several decades old, BCIs
remain a nascent technology in the commercial and medical
spheres. While a few commercial BCI devices are available
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Figure 1. BCI-related publications from 2001 to 2012. Articles and reviews were identified from PubMed and Scopus, with search terms
‘brain computer interface’ or ‘brain machine interface’ in either all fields (PubMed) or the abstract, title, or keywords (Scopus).

to the general public, and at least one is in clinical trials, at
present BCIs remain a research endeavor.

BCIs are seeing considerable research interest. PubMed
and Scopus search results are included in figure 1; the
figure shows the considerable and consistent growth in papers
mentioning BCI from 2001–2012. The quantity of publications
is indicative of the number of laboratories investigating this
topic.

BCI sensor technologies are diverse, including voltage
recordings from implanted microelectrode arrays [3],
electrocorticogram [5–8], and electroencephalogram (EEG)
[9–13] and more varied sensors such as near infrared [14, 15]
or magnetic resonance imaging [16, 17]. The applications are
similarly varied, including both communication and control
of devices such as virtual keyboard [18–20], prostheses
[21, 22], wheelchairs [23–26], or environmental controls
[27, 28]. Depending on the application, aspects of BCI
performance (e.g., accuracy and speed) may differ in their
relative importance.

Due to the large number of BCI laboratories and the
diversity of technology and applications, BCI performance
reporting is far from uniform. Even within the same task and
with the same metric, labs sometimes report incommensurable
results due to differing assumptions about how certain
parameters are calculated.

Several recent publications by ourselves and others have
sought to unify certain aspects of performance reporting in
BCI. Gao [29] focused on information transfer rate (ITR) and
issues particular to its calculation, Thompson [30] suggested
certain metrics for widespread use in measuring performance
in a communication task. Other works have suggested methods
for other tasks, such as the use of Fitts’s law for continuous
BCIs [31, 32].

This paper is a tutorial on performance measurement in
BCI studies, with an intended audience of graduate students
or other researchers entering a new discipline. The paper is
organized in a series of notes and checklists designed for
different types of BCI research; the types are defined in the
following section. Readers are invited to focus their time on
the sections most relevant to their research.

One goal of this paper is to encourage standardized metric
calculation within the BCI community. The recommendations
here represent the consensus opinion of the authors, many
of whom participated in the workshop on performance
measurement at the 2013 International BCI Meeting at
Asilomar Conference Center in Pacific Grove, California.

Types of BCI research

Despite substantial research efforts on improving BCIs,
identifying and implementing standard performance metrics
and procedures has proven elusive. Metrics for BCI
performance are typically designed to capture a particular type
of change implemented in the BCI system, e.g. the addition
of word prediction [33] or automated error correction [34].
Additionally, some metrics are affected by the structure of
the experiment, or require performance to be measured at a
certain point in the BCI system. For example, in event-related
potential spellers, measures of binary classification are used
to quantify classifier performance—an important first step in
many of these spellers. However, these metrics may not be
appropriate to capture the overall spelling performance.

While each BCI may present unique performance
measurement challenges, many aspects are shared between
similar types of BCI research. To group these similar BCIs,
we will use a framework modified from [35]. This framework,
presented in figure 2(A), divides a generalized BCI system
into two modules. The first module, sometimes called the
transducer, acquires physiological signals and translates them
into output signals, for example a selection of one of six
possible outputs. The second module, sometimes called the
control interface or selection enhancement module, translates
these outputs into meaningful communication and control
signals. This second module often incorporates contextual
information in addition to physiological signals; for example,
word prediction software in a BCI for spelling [36] or
intelligent object avoidance in a BCI for wheelchair control
[26].

In this work, we have chosen to consider discrete and
continuous BCIs separately. Figures 2(B) and (C) shows how
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Figure 2. (A) A framework for general BCIs. (B) Examples of modules used in discrete BCI systems. (C) Examples of modules used in
continuous BCIs.

discrete and continuous BCIs might fit into this framework,
with examples of the types of modules that might be included
in each. The framework also includes separate consideration
for the user of the device, and his or her experiences and
perceptions. The user and the BCI together form a user–BCI
system, and the characteristics of this system influence the
overall acceptance and effectiveness of the BCI as a clinical
technology.

The following sections contain checklists for methods
reporting and guidelines for applications of metrics for
performance measurement at several points in the BCI milieu.
First, a short general checklist is provided, consisting of
items that would otherwise appear in multiple sections. Then,
discrete BCIs are covered, including separate sections for
the transducer/classifier module and control interface. Next,
continuous BCIs are discussed, with a focus on the transducer.
Finally, a user–BCI system metric framework is presented that
can be used for both discrete and continuous BCIs. Subsection

headers (usually methods or results) refer to the portion of a
paper to which they are relevant.

General guidelines

General: methods

Understanding the task (what the participants were asked to
do) is critical to appreciating the relevance and validity of
the results. Well-written methods also allow the replication
of experiments and independent validation of results. Our
group has compiled a basic checklist of relevant details, most
of which are commonly reported in the literature, but are
presented in table 1 for completeness. Separate checklists will
appear for each type of BCI in the following sections.

Task timing. Of the above list, timing deserves special
mention. Time appears prominently in both the formulas
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Table 1. General checklist for methods sections.

Item Clarification (∗s indicate further text after the table)

� Equipment Type of electrodes or imaging technology, amplifier, etc
� Sensors/Electrodes Number and location
� Participants Number, demographics and relevant medical conditions
� Experimental protocol Length of time per subject, including training sessions, rest periods, etc
� Data quantity Explicitly include number of trials per subject used for both training and testing
� Task timing Include a figure∗

Figure 3. An example timing figure for a P300-based BCI.

for most performance metrics, and in debates about current
contentious practices. We suggest the inclusion of a figure
outlining the timing of the task, and making specific note
of what portions of time (if any) are excluded from metric
calculation. Figure 3 is an example timing figure for P300-
based BCIs.

As can be seen in the figure, we recommend including
any time necessary for operation of the BCI, specifically
including any pauses between characters given for the purpose
of visual search or confirmation of results. This is an area
of contention in the literature. Some researchers have argued
that removing this time addresses a possible confound when
comparing studies. The stated concern is that if the time
between characters is chosen to be longer than necessary for
the BCI, the performance of the BCI will be undervalued
relative to even the same BCI with different parameter settings.

However, the practice of removing the pauses between
characters can cause problems when comparing between
modalities. If this practice becomes field-standard, BCI
improvements or modalities which demonstrate performance
gains through reducing or eliminating those pauses will be
undervalued relative to existing systems. Examples of these
sorts of modalities are already in the literature (e.g. [37]), and
given that time between characters implies a practical upper-
limit on speller performance, more research of this type is
predicted to follow.

Regardless of the validity of either of the above arguments,
fully reporting the timing of the task, and especially what
portions of the task were and were not included in metric
calculation, will enable re-calculation of metrics and thus
cross-study comparisons.

General: results

In addition to the research-specific metrics suggested in the
following sections, we recommend always including the items
in table 2, which are explained in the following paragraphs.

Chance performance. We specifically recommend reporting
both theoretical chance level, e.g. 20% in a 1 of 5 task, and
empirical chance performance. Empirical chance performance
can be calculated by running re-labeled data through the BCI
system and measuring performance. This technique is more
common in other fields with large-dimensional data and few
examples, such as gene expression studies, but BCI studies also
often have fewer observations than features. Formal tests have
been proposed using this technique [38], but a basic summary
is as follows: randomly permute the class labels, then run the
complete algorithm on the result—including optimization of
hyperparameters following the same heuristics used with the
true data. If this procedure is repeated several times, it builds a
useful estimate of the classifier’s ability to fit what is actually
random data, and thus can give an estimate of how relevant a
result is. If this procedure is followed, the comparison between
theoretical and empirical chance performance forms a sanity
check on the system. The two values should be close to
one another; a dramatic deviation may be an indication to
the researcher to double-check algorithms, particularly those
related to cross-validation and parameter optimization.

Confidence intervals. We note that any performance metric
is calculated on finite data, and can thus be considered simply
one observation of a random variable related to performance.
Closed-form equations for confidence intervals may not be
available for all metrics. However, the equations are available
for the most common metrics for both discrete and continuous
BCIs, accuracy (a binomial random variable) and correlation
coefficient (see e.g. [39]). Confidence intervals can aid readers
in the interpretation of results, and in some cases can be used
in the calculation of performance metrics as well [21].

Idle performance. In comparison to traditional input devices,
BCIs are much more prone to unintentional activation because
they require no volitional movement. This problem, sometimes
called the ‘Midas Touch’ or ‘no-control’ problem, has been
receiving recent attention in the BCI literature. At present
there exists no standard way to report this performance,
partly because different modalities call for different strategies.
Regardless, this performance is important clinically, and
we recommend reporting idle performance. Simple metrics
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Table 2. General checklist for results sections.

Item Clarification (∗s indicate further text in the paper)

� Chance performance Theoretical and empirical∗

� Confidence intervals For each metric, esp. accuracy and correlation coefficient∗

� Idle performance Standby or ‘no-control’ performance∗

Table 3. A methods checklist for discrete BCIs.

Item Clarification (∗s indicate further text after the table)

� Time per selection Time per selection and time per correct selection∗

� Selection method Direct selection versus cursor-based selection
� Timing heuristics E.g. method for choosing number of sequences in P300 BCI, dynamic stopping criteria in stimulus-based BCIs

such as number of unintentional exits from standby mode
in a particular timeframe, paired with the average time to
intentionally exit standby, are useful pieces of information.
As the field evolves, more formal metrics are likely to arise.

Discrete BCIs: transducer

Metrics for measuring transducer performance quantify the
outputs themselves, not the process by which the output
was created. These metrics are therefore an obvious choice
for a direct selection BCI. Research done on the transducer
typically focuses on improving classifier performance, often
through signal processing, machine learning, or alternative
stimulus presentations. However, discrete metrics may also be
appropriate for certain continuous BCIs with discrete control
interfaces. As these systems share characteristics of both
discrete and continuous BCI systems, researchers working in
this area may find both sections relevant to their work.

Methods

We recommend reporting the metrics presented in table 3.

Time per selection. Reporting the details of task timing (see
General: Methods) should help clarify this measure, but papers
should be explicit as to whether this is time per correct selection
or time per any selection. While the former can provide a
measure of the overall BCI performance, many metrics depend
on the latter. We recommend reporting both.

Note that while traditional P300- or steady-state visual
evoked potential-based BCIs may have a set time per selection,
other modalities and techniques (e.g. cursor-based selection
and dynamic stopping criteria) have a variable time per
selection.

Results

Many metrics are available to measure the performance of
a discrete transducer. In a recent survey of discrete BCIs for
communication [30], the two most commonly reported metrics
were accuracy and bit rate, often calculated using Wolpaw’s
ITR formulation [40]. We recommend reporting both of these
quantities, as noted in table 4.

Table 4. A results checklist for discrete BCIs.

Item Clarification (∗s indicate further text after the table)

� Accuracy Include confidence bounds, note calibration timing∗

� Bit Rate Mutual information if possible, ITR if not∗

Accuracy. Firstly, as was mentioned above (in General:
Results), all observed performance can be considered a single
observation of a random variable. Accuracy follows the
well-studied binomial distribution. Thus, confidence bounds
on accuracy can and should be calculated using common
statistical functions for parameter estimation. If separate
accuracies are allowed for either each class or each target-
outcome pairing, then each of these accuracies must also be
estimated, typically from a much smaller dataset.

Secondly, discrete transducers often work best with
calibration data taken on the same day as classification is
performed. Authors should indicate if same-day calibration
was performed, and otherwise include timing details in their
experimental protocol.

Bit rate/information transfer rate. Information throughput is
often sought after as an objective measure of the performance
of a BCI. Since the full mutual information calculation from
Shannon’s channel theory [41] is impractical for many discrete
BCIs due to data scarcity [30], most BCI research uses an
approximation known as the ITR. ITR was defined by Wolpaw
in [40] (see equation (1)), by simplifying mutual information
based on several assumptions. The formula for ITR is:

B =
(

1

c

)
∗

[
log2 N + P log2 P + (1 − P) log2

(
1 − P

N − 1

)]
(1)

where B is ITR in bits per second, c is the time per selection (as
per General: Methods, we recommend including time between
characters), N is the number of possible choices, and P is the
probability that the desired choice will be selected, also called
the classifier accuracy. ITR may also be presented in bits per
symbol by removing the 1/c term.

ITR is only equivalent to mutual information under
the following assumptions: (i) BCI systems are memoryless
and stable discrete transmission channels; (ii) all the output
commands are equally likely to be selected; (iii) the
classification accuracy is the same for all the target symbols;
(iv) the classification error is equally distributed among all
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the remaining symbols. Strictly speaking, ITR cannot apply
to those BCI systems that do not meet the above requirements
[29]. In practice, BCI systems typically violate several of these
assumptions, notably those of uniform selection probability
and uniform classification error distribution. Therefore,
researchers are encouraged to be careful in reporting ITR,
especially when using ITR for comparisons between different
BCI systems.

We recommend reporting ITR only when circumstances
prevent a full mutual information calculation. The ways in
which the BCI being studied violates the ITR assumptions
should also be included. Moreover, we do not recommend
using ITR to optimize BCI performance, as ITR is a theoretical
measure and tracks poorly with achieved performance. Other
metrics presented in the following section are more relevant to
the user and better reflect achieved performance.

Discrete BCIs: control interface

Research focusing on the control interface includes work such
as integrating predictive spellers into a BCI [33, 36], but
also concepts such as symbolic communication and selection
enhancements similar to the T9 texting interface used on early
cell phones [42]. Other techniques, such as dictionary-based
classification or language models [43–45], could be considered
control interface enhancements, even though they inform
transducer decisions, because they depend on the semantic
meaning of the selection. Methods reporting for these studies
is very similar to those at the transducer level, and will not
receive an individual section.

Results

Metrics that include the contribution of the control interface
are a more recent development in BCI literature, though some
metrics for similar performance appear in the literature of the
text entry field. Here, we present a brief summary and a few
notes on two BCI-specific metrics: Efficiency and BCI-Utility.

Efficiency. The efficiency metric [46] evaluates the
performance of a BCI system as a combination of the
contributions of the transducer, which recognizes user’s
intentions and classifies them into logical symbols (LSs)
and the control interface, which translates LSs into semantic
symbols (SSs) finally mapped to the end control.

It starts from the evaluation of classification performances
by means of the extended confusion matrix (ECM), a N
x (N+1) matrix where the N LSs to be classified (rows),
those actually classified (columns) and those undetermined
(abstentions, (N+1)th column) are stored. An example of ECM
with four different LSs, A, B, C and D, is reported in [46]

ECM =

A B C D abst.
A 48 0 0 0 2
B 1 46 2 1 0
C 2 2 43 2 1
D 5 3 4 38 0

. (2)

In general, a LS can be assigned to an UNDO character to be
selected if the wrong symbol is classified. To maximize the

Efficiency, the UNDO could be assigned to the least error-
prone LS.

A cost can be assigned to misclassifying an LS, in terms of
the further steps needed to correct them: for example, assuming
that error rates on LSs have the same order of magnitude, in
a classical spelling task, two additional selections are needed
to delete the error and reselect the desired character, while
an abstention requires only one additional selection. Hence
it is possible to quantify the loss of information due to
misclassifications in terms of the expected additional mean
cost occurring when attempting to generate each LS; these
costs are stored in a SuperTax (ST) vector with elements as
shown in equation (3).

ST(i) =
NLSs+1∑

j=1

Prob(selecting j| target i) ∗ Cost(error j) (3)

Finally if the probability of occurrence of each LS ( p̂occ)

is known, the mean expected selection cost (ESC) can be
computed, see equation (4): it represents the mean number of
classifications required to generate a correct LS:

ESC =
NLSs∑
n=1

p̂occ(i)

1 − ST(i)
(4)

where p̂occ depends on the LSs to SSs encoding strategy: for
example, it changes if the user spells in Italian or English.

If any element of the ST vector is equal or greater than
one, for example when the error rate on an LS is greater than
50%, the metric will not converge and the communication will
be meaningless because it will be affected by too many errors.
This may occasionally cause problems with calculating this
metric on small datasets [30].

The Efficiency of a BCI system is inversely proportional
to ESC.

The main benefits of the Efficiency are:

(1) The contributions of the transducer and the control
interface are considered separately, by means of the ECM
and the error correction strategy. This means that it is
possible to simulate different BCIs by adapting different
control interfaces to the same transducer in order to
choose the best-performing system according to the final
application.

(2) Errors can be weighted differently according to the
final application: an error when using a BCI to drive a
wheelchair has stronger consequences than in a spelling
application. This allows evaluation of the performance of
real world BCIs.

(3) It is possible to predict if the performance of the system
will converge and communication will be possible [47].

Utility. The aim of the Utility metric [48] is to measure the
average benefit achievable with a BCI. It is driven by a very
intuitive concept: the more benefit a system gives, the more
useful the system is.

For a discrete BCI device, we may observe that a benefit
(penalty) is obtained when the desired (wrong) target is
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reached. Under this assumption, it was shown [48] that the
Utility for a discrete-BCI can be formulated as

U = E[bk]

E[�tk]
=

∑
k bk∑

k �tk
(5)

where bk is kth gain achieved when the kth target is reached and
�tk is the time passed since the previous target was reached.
The formulation can be interpreted as the ratio between
the average benefit and the average time needed to get it.
Therefore, Utility is maximized when the maximum benefit
is obtained in the shortest interval of time. This interpretation
makes the U metric an intuitive choice when two BCI interfaces
have to be compared.

In practice, computation of Utility requires the definition
of two quantities (benefit and time). Time has been addressed
in other parts of this article (General: Methods), but the benefit
term can seem to be a possible source of contention. Indeed
this term adds flexibility and facilitates comparison with other
metrics presented in the literature. Two examples:

• One could assign a positive benefit (+1) for any selected
correct target. In this case, it easy to show that U measures
the average number of correctly selected target per unit of
time. Within this choice, U has the unit of 1/time and is
the inverse of ‘time per correct selection’.

• Alternatively, the benefit could coincide with the
information conveyed when the correct target is selected.
For a speller, assuming equal probability among
(N-1) letters, the conveyed information will be bL =
log2(N − 1). In this case, with the same BCI as the
previous example, U has the units of bits/time and thus
provides a measure directly comparable with ITR.

More interestingly, Utility can be linked to the
performance of the classifier (i.e., to its accuracy). This
relationship is interface-specific and it has been derived in
closed form in a few cases only. For example, for a BCI speller
interface (see [48] for interface details) it was shown that

U = 2p − 1

c
b (6)

where c is the duration of a trial, p is the classifier accuracy, and
b is the benefit measurement unit (e.g., 1 in the case of letters,
bL in the case of bits). When an automatic error correction
system is added, the metric becomes

U = prc − (1 − p)re + p − 1

c
b (7)

where rE and rC are the recall from error and from corrected
letter, respectively. Interestingly, if we want to compare a
speller interface with and without automatic error correction,
we can compute the ratio of equations (6) and (7). In this ratio
the benefit terms cancel out regardless of how they are defined.

As a final remark, if the equations (6) or (7) are employed,
the experimenter should be aware that their validity is strictly
related to a specific design of the interface. Conversely,
equation (5) has general validity.

Continuous BCIs

Some BCIs offer continuous control over the position of one
or more end effectors or joints. A typical task is ‘center out’
cursor movement acquiring radial targets or targets distributed
through the workspace [4, 31, 32, 49–54]. Other tasks would
include continuous reconstruction of joint angles [55], or
isometric force [49]. An emerging task is control of a prosthetic
arm with multiple degrees of freedom [3, 56, 57].

The metrics in this section are only appropriate if the task
(as well as the BCI) is continuous. A cursor that selects from
one of four walls is performing a discrete task and performance
may be better evaluated as a discrete classifier. One rule of
thumb for whether a task is continuous is whether the end
effector can select anything within its range of motion. For
example, if the select signal is a dwell time, the cursor should
be able to select any point in the workspace, even if not all
points are tested. Similarly, if one is attempting to reconstruct
grasp aperture, a range of final grasp apertures should be
included in the training and test sets.

Methods

Task reporting is important for all BCI studies, but critical for
continuous BCIs. Continuous control is difficult to measure,
but including the elements in table 5 will enhance the
interpretation of the study.

Degrees of freedom. While BCIs aim to provide a
replacement for impaired motor function, the number of
degrees of freedom is typically dramatically lower than the
replaced system. The degrees of freedom of a continuous
BCI system should be reported, both the number of
independent or loosely-correlated input features, and the
number of dimensions of the output which can be controlled.
Additionally, the definition of degree of freedom used should
be included in the report. Ideally an output degree of freedom
would be the full control of a scalar output, i.e., the ability to
both move in either direction and to stop when desired.

Online or offline. A final, critical piece of information for
methods sections is how feedback was presented to the user.
Particularly when researchers are choosing between different
candidate control algorithms, the algorithms may be compared
‘offline’ using prerecorded neural data. Papers should always
include what feedback was given to the user, and clearly
indicate if the performance shown is online or offline in nature.
While offline comparisons are useful, they do not necessarily
predict online performance. For example, offline analyses
may suggest large bin sizes, when the latency these bin sizes
introduce actually lowers online performance by making the
cursor less responsive to the user’s error corrections [58].

Results

Many metrics are available to measure Continuous BCI
performance. Depending on whether the study is online or
offline, different metrics may be more appropriate. This section
will present notes on several of the most popular metrics in this

7
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Table 5. Methods checklist for continuous BCIs.

Item Clarification (∗s indicate further text in the paper)

Task geometry
� Degrees of freedom Input and output∗

� Size and starting position Including both target and end effector (cursor, limb)
� Distances between targets Specify edge-to-edge or center-to-center
� Units for all dimensions Per cent of workspace, pixels, mm, or visual degrees

End effector behavior
� Control Timing Time when cursor leaves user control, if any (e.g. does the cursor reset automatically

after a target is selected)
� Method of selecting targets E.g. dwell time or separate selection signal
� Behavior of other targets Are all other targets inactive, or is the user allowed to make errors?
� Speed gain settings Linkage between neural signal and effector speed

Feedback characteristics
� Form of online feedback What controlled the cursor/effector during the session?
� Latency Lag between neural signal and resulting feedback
� Online or offline Was online feedback provided to the user?∗

1

-1

0 2π

1

-1

0 2π

ρ=0.87
p<<0.001

Figure 4. Two simulated sinusoids, one decaying in amplitude, and
a demonstration of a remarkably high correlation coefficient.

area: correlation coefficient (and a few alternatives), accuracy
or per cent correct, and Fitts’s law.

Correlation coefficient. The most commonly-used offline
performance metric is Pearson’s correlation coefficient, ρ.
Correlation coefficient can be an informative metric, for
example one can quickly check if an intracortical implant
is recording from task-relevant neurons. However, there are
two important caveats. First, the correlation coefficient is
scale invariant. This means the cursor can miss the target
dramatically and still generate high ρ values provided the sign
of the actual and predicted movements match. Figure 4 shows
an example of a sinusoid and a sinusoid with continuously
decreasing amplitude. The signals are correlated with ρ = 0.87,
despite having remarkably different shapes. This property
could for example obscure the effects of global firing rate
nonstationarities, which tend to simply increase or lower
the amplitude of the predicted movement [52]. Second, if a
decoder simply generates a signal that oscillates along with
the trials, it can also generate a high ρ value. This may
imply that the decoded signal has information about target
position when it actually only has information about movement
onset. In general, correlation coefficient may tend to minimize
differences in performance between different algorithms, even
for the same task.

We suggest correlation coefficient be calculated and
reported, but recommend also reporting scaling-dependent

distance = d

diameter = w

Figure 5. An example Fitts’s law task. The dotted circle represents
the cursor’s starting point, the solid circle is the trial’s target.

metrics such as mean square error. There are other measures
of continuous trajectories that have been applied [59]
and could be of value in assessing BCI performance,
including mean-integrated-distance-to-target [58], distance
ratio (also referred to by some groups as movement efficiency
or movement inefficiency), orthogonal direction changes,
movement direction changes, target exits per selection, and
variations of Fitts’s law. These metrics may better capture the
continuous aspects of BCI performance.

Accuracy (per cent correct). While this is the first metric
typically reported, it should be noted that it is highly dependent
on task parameters such as target size and dwell time.
Consequently, this is less a performance metric, but more an
indication that the task was well-calibrated for the subject and
modality.

Fitts’s law. Potentially the most robust and informative
performance metric for continuous tasks is calculating an
overall bit rate using Fitts’s law [31, 32]. This is also the
guiding principle for the ISO standard 9241 [60] on evaluating
computer mice. Fitts’s law involves calculating the ‘index of
difficulty’ of a particular movement according to equation (8),
in bits. This is related to the ratio of the distance traveled (D) to
the target width (W ) as shown in figure 5. One can then divide
this by the trial time and average across the dataset to obtain
a ‘throughput’ in bits per second, as shown in equation (9).
According to Fitts’s law, this value is robust to many
parameter changes such as target width and workspace size,
and can potentially enable comparisons across labs (See [32],
Supp Mats). Even if not attempting a task described in the ISO
standard (such as 2D center out), one can still apply the basic
principle and create a performance metric based on the ratio

8
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Figure 6. The uFEEL framework for user–BCI system measurement.

of the total distance traveled to the acceptance window of the
target.

Index of difficulty = log2

(
1 + D

W

)
· (bits) (8)

Throughput = Index of difficulty

Movement time
· (bits per second). (9)

Fitts’s metrics are not appropriate without a clear selection
signal, whether a click, grasp, or substantial dwell time
(>250 ms). Without a selection signal, an infinitely fast
random walk would have the highest performance. Using a
selection signal, a related metric is ‘dial-in’ time, i.e., how
much time did it take to select the target after it was initially
touched. In one study [32], the Fitts bit rate was doubled
primarily by reducing the dial in time by 89%. Certain task
differences that make one task easier than another can make
Fitts’s bit rate incomparable between studies. For example, if
the targets in one study are in open space while the others are
against a hard border, the rates will be incomparable.

User–BCI System

Results

User–BCI system metrics provide a user-centric view of BCI
system performance and quality. Users are an integral part of
the BCI product lifecycle, and their interaction and experience
determine the acceptability and viability of BCI systems. User
experience (UX) principles could be employed to understand
user requirements and experiences. UX provides a blueprint
of user needs, emotions and experiences [61]. To assess BCI
performance from the user’s point of view, we propose the

uFEEL framework shown in figure 6, which is comprised of
four UX factors: Usability, afFEct, Ergonomics, and quality
of Life.

Usability. Usability is the extent to which a product can be
used to achieve specified goals with effectiveness, efficiency
and satisfaction in a specified context of use [60]. Usability also
includes learnability. Usability measures could be employed
to assess the BCI system design metrics explored elsewhere in
this paper from an end-user’s perspective, such as:

• Effectiveness relates to accuracy with which a task is
completed. Effectiveness represents overall BCI system
accuracy as perceived by the end user. Accuracy and error
rate directly influence the user’s perceived effectiveness.

• Efficiency, distinct from the Efficiency metric, relates to
rate and timings with which a task is completed. Efficiency
of a BCI system represents the overall BCI system speed,
throughput and latency as perceived by the end-user.
For instance, Utility and the Efficiency metric directly
quantify elements of the efficiency of BCI systems.

• Learnability relates to ease with which a system could
be learned and used. Learnability applies to both end-
user and caregiver. Notes on learnability and usability in
general can be found in [62].

• Satisfaction represents the positive attitude of the user
toward the use of the system. User satisfaction can be
measured using ratings scales or qualitative methods.

Affect. Affect corresponds to emotions and feelings. In terms
of BCIs, it can relate to how comfortable the system is,
especially for long durations, and how pleasant or unpleasant

9



J. Neural Eng. 11 (2014) 035001 D E Thompson et al

they perceive the audio/video stimuli to be. Normally, rating
methods [63] and qualitative techniques are used to assess
emotions. Since users in a locked-in state may not be able
to provide such affective ratings easily (if at all), other
physiological measures could be used. For example, EEG
event-related potentials and spectral features, galvanic skin
responses, or heart rates could be used to objectively assess
user fatigue, valence, and arousal levels [64].

Ergonomics. Ergonomics is concerned with the interactions
between humans and their surroundings. Some sub factors
include:

• Cognitive Task Load is a multidimensional construct
that represents the load on the user’s memory. For
instance, in visual BCI systems, the screen used for
presentation (its size, flashing lights, and location of
symbols), and the information used (how stimuli are
presented, accessed, and controlled) creates a work load.
For patients, calibration and training of the BCI system
may also increase their cognitive load, creating discomfort
and fatigue. To assess cognitive load, a subjective rating
system called NASA Task Load Index can be used [65].
Additionally, physiological measures such as eye-activity,
EEG ERP and spectral features could also be used to
measure cognitive load objectively [65].

• Control represents the flexibility and freedom with which
a user can use a system. BCI systems should, therefore,
enable users to undo/correct errors, and ideally offer the
freedom to go into idle or rest states.

Quality of life. Quality of life represents the overall user
experience of the system’s usefulness and acceptability and
its impact on the user’s well-being.

• User’s ROI (Return on Investment) is an economic
measure of the perceived gain attained from a product.
A high ROI represents a high utility product.

• Overall Quality of Experience represents an overall
assessment of user experience. For instance, the level
of improvement in a patient’s life or the video gamer’s
experience with BCI-controlled video games. The overall
user experience could be evaluated using rating or open
ended questions.

Conclusion

Performance measurement is a surprisingly difficult task,
and often a source of contention between laboratories and
researchers. This work has presented guidelines and checklists
for performance reporting for many different types of BCI
research, highlighting the variety of research currently ongoing
in the field. While we cannot claim to have produced a universal
guideline or handbook for performance measurement in BCI,
we hope that the intended audience will find this paper a useful
primer on the topic.
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