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Abstract

The paper addresses the problem of locating sensors with a circular field of view

so that a given line segment is under full surveillance, which is termed as the Disc

Covering Problem on a Line. The cost of each sensor includes a fixed component f ,

and a variable component that is a convex function of the diameter of the field-of-

view area. When only one type of sensor or, in general, one type of disc, is available,

then a simple polynomial algorithm solves the problem. When there are different

types of sensors, the problem becomes hard. A branch-and-bound algorithm as

well as an efficient heuristic are developed for the special case in which the variable

cost component of each sensor is proportional to the square of the measure of the

field-of-view area. The heuristic very often obtains the optimal solution as shown

in extensive computational testing.

Scope and Purpose

Problems of locating facilities to cover sets of points on networks and planes have

been widely studied. This paper focuses on a new covering problem that is moti-

vated by an application where a line segment is to be kept under surveillance using

different types of radars. Using reasonable assumptions, some nonlinear covering

problems are formulated. Efficient exact algorithms and heuristics are developed

and analyzed for “easy” and “hard” cases, respectively.

Keywords: Sensor location, network covering problems, mixed integer nonlinear

programming.
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1 Introduction

In this paper we introduce and study a new locational decision problem: given a set of discs with variable

radii with costs depending on their radii and fixed costs, find a subset covering a unit length segment at

minimum cost.

This problem was motivated by the following application, part of which was an industry-funded radar

surveillance project at The University of Arizona. We have a river over which we need to track possible

activities of non-collaborative or antagonistic objects or people (e.g., unauthorized boats, dangerous

floating objects, swimmers, etc). For this purpose, we need to locate a set of radars so that every point

on the river is under surveillance by at least one radar. It is assumed that the river can be modeled as a

tree network consisting of line segments and that each radar has a field of view defined by a radius and

an angle of view (a pie-shaped coverage), with this angle large enough so that the coverage area may be

approximated as a disc. Although the problem is relatively easily stated, the actual locational decision

is complicated due to several additional factors. Coverage depends not only on the river topology, radar

type and power, but also on several parameters such as width of river and obstacles over it, potentially

forbidden areas where radars may not be located, elevation of the potential location sites, and other

characteristics associated with the physical environment, dealing with, for example, the atmospheric and

water conditions. Further details on this scenario and the scope of the project are reported in [20].

This radar sensors location model relates to several broad classes of geometric locational problems.

Many important land-use planning decisions deal with locating facilities at sites, choosing from a given

set of potential sites, so that another given set of points are “covered” (i.e., they are within a specified

distance from the closest located facility) while optimizing a specified objective. Models for locating at

points within continuous spaces, as well as locating among set of discrete points or on a network, are widely

used by geographers, regional scientists, network planners, and others facing locational decisions problems

which can be modeled as such covering problems (for a comprehensive review of the literature see, for

example, [7, 13, 15, 18]). From the methodological viewpoint, the radars location problem relates closely

to the class of geometric covering problems where potential facilities and demand points are embedded

on a Euclidean plane, for which there is considerable literature. We briefly review below results that are

most relevant for our application.

Problems related to Covering with discs consists of identifying the minimum number of discs with

fixed radius to cover a given set of points in the plane. A number of articles have appeared in the last

three decades addressing this NP-hard problem. In 1975, Chvátal introduced the Art Gallery Problem in

[3], where one has to find the minimum number of watchmen (or cameras) needed to observe every wall

of an art gallery room. The art gallery is assumed to be a n-sided polygon, possibly with polygonal holes.

It has been shown that an art gallery with h holes and n walls (including holes’ sides) requires at most

�(n+h)/3� watchmen (the bound is tight, see [11, 19]). Another important paper, by Hochbaum and Maas

[10], presents polynomial approximation algorithms for different versions of geometric covering problems,

including covering by discs. Subsequently, several papers have appeared with improved approximation

factors and running times (see for example, [2, 4]).
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The problem of partial covering, also referred to as the robust k-center problem, is analyzed in [22],

where computational complexity is discussed and approximation algorithms together with computational

evidence of their performance are provided.

The geometric disc covering problem relates also to the deployment of wireless transmission networks.

Surveys on coverage problems dealing with this particular application can be found in [12] and [21]. We

limit our literature review to a few papers dealing with applications similar to the radar sensors location

problem. Alt et al. [1] consider a problem where a set of points demand connectivity. Their goal is to

locate a set of sensors, modeled as discs with variable radii, covering the demand points at minimum total

cost. Each sensor’s transmission cost has the form f(r) = rα where r is the covering radius of the sensor.

Several results are presented in [1], including complexity characterization and approximation algorithms.

Although different scenarios are addressed, depending on possible restrictions on discs’ locations and

demand points, their analysis is limited to discrete sets of points.

Article [6] addresses the problem of locating base stations for wireless communication where the

demands and potential facilities are represented by a discrete set of points and each station can broadcast

up to a maximum distance. A polynomial approximation scheme is given, together with complexity

results. The following disc-covering geometric problem applied to wireless communication is addressed

by Franceschetti et al. [5]: given an infinite square grid G, determine how many discs, centered at the

vertices of G, with a given radius r, are required, in the worst case, to completely cover a disc with

the same radius arbitrarily placed on the plane. The authors show that this number is an integer in

{3, 4, 5, 6} depending on r and on the grid spacing. In addition, they discuss the applicability of this

model to the design of approximation algorithms for facility locations on regular grids and to base station

placement for wireless communication. The expected quality of service (level of surveillance) of a given

sensor network is analyzed in [17] and [14], where the authors exploit computational geometry and graph

theoretic techniques, such as Voronoi diagrams, Delaunay triangulation and graph search, to design exact

polynomial algorithms for some special cases.

Location of railway stops is another application of the disc covering problem. In [9], the effect of

introducing additional stops in the existing railway network is addressed. The problem is comprised of

covering a set of points in the plane by discs with the restriction that their centers have to lie on a set of

line segments that represents the railway tracks. A similar problem is addressed in [16], where the discs

must be centered on two intersecting lines.

The location problem we address in this paper is a special disc covering problem in the following ways:

1. There are different types of facilities, which in our case are radar sensors, where the area covered

by each radar is a disc with a diameter x that depends on the power of the radar unit.

2. The cost ci of locating disc i includes a nonnegative fixed cost fi and a variable cost, which may be

approximated by an homogeneous polynomial function gi(xi). In particular, gi(xi) is modeled as a

second-order polynomial, that is gi(xi) = bix
2
i , where xi is the the field of view of radar i and bi is

a positive real number.
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3. A line segment with negligible width has to be covered by the discs. As it will be clear in Section 3,

we may assume that the segment has unit length with no loss of generality.

We refer to our problem as the Disc Covering Problem on a Line.

The paper is organized as follows. In Section 2 some preliminary results are presented for the case of

identical disc (radar) types and convex cost functions; in the sequel of the paper (Sections 3 –5) we focus

on the problem with assumptions 1–3. In Section 3 a quadratic programming formulation is developed.

A Lagrangean relaxation of the problem and a technique to solve such a relaxation is also proposed.

Section 4 presents a branch-and-bound algorithm for the problem: upper and lower bounding techniques

are illustrated and a branching strategy is discussed. Some computational results are given in Section 5.

Finally, some concluding remarks are made in Section 6.

2 Notation and preliminary results

We denote by Q the set of the q available discs (radars). For all i ∈ Q, at most one copy of disc i may be

used for covering the line segment and any power level is allowed so that we can have any disc coverage

distance 0 ≤ xi ≤ 1. These assumptions may appear restrictive for real applications but note that (i)

usage of multiple copies of the same disc type may be modeled by including in Q a suitable number of

items with the same characteristics and (ii) if a limit D exists on the coverage distance, then the problem

may be decomposed by splitting the segment into pieces whose lengths are not greater than D and solving

the problems for each segment separately (this may be an effective heuristic approach).

For any selected disc i ∈ Q, the coverage distance is the diameter of the disc xi ∈ R+, and its

contribution in the total cost function is

ci(xi) =

{
0 if xi = 0

fi + gi(xi) if xi > 0
,

where gi(·) is convex with gi(0) = 0 and the setup cost fi is nonnegative. Although, because of the fixed

cost component, the cost function ci(xi) is nonconvex in 0 ≤ xi ≤ 1, when the set of selected discs S, i.e.,

those for which xi > 0, is fixed, then total coverage is in fact convex and the problem of determining the

covering diameters is easily solved using KKT conditions (see Section 3).

Note that once xi is given for all i ∈ Q (we will have xi = 0 for those radars that are not selected), it

is trivial to find the set of optimal locations: just align the discs so that they do not intersect and they

cover the entire line. For this purpose we choose the diameters in such a way that their sum is equal to

the length of the line, which in our case is equal to 1. An illustration of a feasible solution to our problem

is given in Figure 1.

We now present some simple results concerning the case when all available discs are of the same type,

that is, for all i ∈ Q and x > 0, ci(x) = c(x) is a general nonnegative convex function. To the best of
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1 unit

Figure 1: Example of a feasible solution

our knowledge, these results, though straightforward, are not present in the literature. However, it is

worthwhile to point out that, differently from [1], where the objective function is of the form rα and both

the potential facility locations and the demand points are discrete sets, we exploit the fact that we deal

with a continuous line segment to obtain efficient solutions for even more general cost functions.

When the discs are all of the same type, our problem reduces to finding the optimal number k ≤ q of

copies and the optimal coverage area for each copy.

Proposition 1 When all the discs are of the same type having the cost functions ci(·) = c(·), for all

i ∈ Q, if an optimal solution consists of locating k discs, then there is one solution where each of the k

discs has the same diameter.

Proof. Based on the convexity of c(x), for any k-uple of nonnegative numbers x1, . . . , xk, with
∑k

i=1 xi =

1, we have:

k · c
(

1
k

)
≤

k∑
i=1

c(xi). (1)

Hence, the cost of locating k discs (of the same type) with equal diameters—that is, each disc covers an

equal portion of the line segment—does not exceed the cost of any other feasible solution that uses k

discs. �

Proposition 1 clearly indicates the optimal locations of the discs since they need to be uniformly spaced

over the line segment.

The next natural question we need to ask is “What is an optimal number of such discs, that is the

best value for k?”.

First we write c(x) = f + g(x) with f ≥ 0 and g(0) = 0. Note that we may install at most q discs of

the same type on the line. It is easy to observe that with zero setup costs (f = 0) the cheapest solution

consists of installing the largest possible number (q) of facilities.

A solution that uses k + 1 discs costs no more than a solution with k discs if and only if the following

is true:

f + (k + 1) · g
(

1
k + 1

)
≤ k · g

(
1
k

)
. (2)

If f = 0, the last inequality is always valid, because of the convexity of g(·). Therefore, it is cost-effective

to locate another disc if the additional setup cost does not exceed the gain in the variable costs.

5



Acc
ep

te
d m

an
usc

rip
t 

The effective cost of locating k discs is

F (k) = kc(
1
k

) = kg

(
1
k

)
+ kf. (3)

Since g(·) is convex,
∂2F

∂k2
=
(

1
k3

)
∂2g

∂k2

∣∣∣∣
1
k

≥ 0 (4)

Hence, there must be 1 ≤ k∗ ≤ q such that

F (1) ≥ F (2) ≥ . . . ≥ F (k∗) and F (k∗) ≤ F (k∗ + 1) ≤ . . . ≤ F (q). (5)

Therefore, since a binary search can be used to efficiently find the k∗, the following proposition holds.

Proposition 2 When the q discs are all of the same type with the cost functions ci(·) = c(·), for all

i ∈ Q, the problem is solvable in O(C log(q)) time, where C is the maximum computational effort for

calculating c( 1
k ). �

3 Problem formulation

In this section we develop a quadratic programming formulation of the general problem where the q discs

(radars) may have different properties. Using the notation introduced in Section 2, the cost contribution

of any disc i ∈ Q that covers an area having diameter xi is a quadratic polynomial

ci(xi) = fi + bix
2
i

with fi ≥ 0, bi > 0. Then the location problem can be formulated as the following Mixed Integer Quadratic

Program.

(P)

z∗ = min
∑
i∈Q

fiyi + bix
2
i

s.t. xi ≤ yi, for all i ∈ Q (c1)∑
i∈Q

xi = 1 (c2)

x ∈ R
q
+ (c3)

y ∈ {0, 1}q (c4)

In the solution of P , y is the vector to indicate selected discs (radars) in Q where yi = 1 if disc i is used,

yi = 0 otherwise. Constraints (c1) force the disc coverage diameter xi to be zero when the corresponding

disc i is not selected (and therefore the corresponding cost contribution is zero). Constraint (c2) is the

coverage constraint that assures that the whole line segment is covered.

As stated before, the unit length assumption does not introduce any loss of generality. It is clear that

P can be equivalently used for a problem P̃ where the line has length � �= 1. Let Ĩ be an instance of
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P̃ where the cost coefficients for the disc i are f̃i and b̃i. Then we can solve Ĩ by solving an equivalent

instance I of the unit length problem P having cost coefficients fi = f̃i and bi = �2b̃i. If (x, y) is an

optimal solution of I, then (�x, y) is optimal for Ĩ.

In the remainder of the paper we propose methods to solve problem P and discuss the results of some

computational experiments to evaluate the performance of these methods.

Our first observation concerns the existence of efficient methods to find the optimal coverage when

the set S ⊆ Q of selected discs (i.e. active radars) is given or known a priori. Under this assumption,

the variables yi = 1 for all i ∈ S in problem P and the resulting problem is easily solved by applying

Karush-Kuhn-Tucker optimality (KKT) conditions. In fact, this restriction of the problem can be written

as

(RP) z(S) = min

{∑
i∈S

fi + bix
2
i :
∑
i∈S

xi = 1; xi ∈ R+, i ∈ S

}
.

Problem RP is a convex optimization problem. Define the following Lagrangean function (without loss

of generality, the constant term
∑

i∈S fi has been omitted in the objective function below):

L(x, µ, λ) =
∑
i∈S

bix
2
i + λ

(
1 −

∑
i∈S

xi

)
−
∑
i∈S

µixi

The KKT conditions, for the triple (x∗, µ∗, λ∗), are

∇xL(x∗, λ∗, µ∗) = 0q∑
i∈S

xi = 1

µ∗T

x∗ = 0

x∗ ≥ 0q

µ∗ ≥ 0q

It follows from x∗
i > 0 that µ∗

i = 0 for all i ∈ S. Then,

λ∗ =
1∑

j∈S
1

2bj

and

x∗
i =

λ∗

2bi
=

1
2bi∑

j∈S
1

2bj

, i ∈ S

satisfy the KKT conditions and, therefore, are a global optimum for problem RP .

Although coverage diameters may be computed in a closed-form, choosing the subset S ⊆ Q of active

radars is a tedious computational task. The branch-and-bound algorithm described in Section 4 relies on

a dual bound estimation which is developed in the next subsection.
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3.1 Lagrangean relaxation of P

We will use Lagrangean relaxation to obtain a lower bound on z∗, the optimal solution value of problem

P . Relaxing constraints (c1) of P using nonnegative Lagrangean multipliers κi, i = 1, . . . , |Q|, we obtain

the following problem:

(LRP)

zLRP (κ) = min
∑
i∈Q

(fi − κi)yi + bix
2
i + κixi

s.t.
∑
i∈Q

xi = 1 (c5)

x ∈ R
q
+ (c6)

y ∈ {0, 1}q (c7)

Problem LRP, a relaxation of P for any κ ≥ 0q, is decomposable since optimal values for the yi variables

are independent of the values of the xi variables. In particular, we may choose the following optimal

values for y:

y∗
i =

{
1 if fi < κi

0 if fi ≥ κi

for all i ∈ Q.

The remaining convex program, which depends on the x variables only, is:

(LRP ′)

zLRP ′(κ) = min bix
2
i + κixi

s.t.
∑
i∈Q

xi = 1 (c8)

x ∈ R
q
+ (c9)

and therefore zLRP (κ) = zLRP ′(κ) +
∑

i∈Q (fi − κi)y∗
i . In order to solve problem LRP ′, we define the

following Lagrangean function, where we use multiplier λ ∈ R for constraint (c8) and multipliers µ ∈ R
q
+

for nonnegativity constraints (c9):

Lκ(λ, µ) = min
∑
i∈Q

(bix
2
i + κixi − µixi) + λ

⎛⎝1 −
∑
i∈Q

xi

⎞⎠.

Then the KKT conditions are

∇xiLκ(x∗, λ∗, µ∗) = 2bix
∗
i + κi − µ∗

i − λ∗ = 0 for all i ∈ Q (6)∑
i∈Q

x∗
i = 1 (7)

µ∗T

i x∗
i = 0 for all i ∈ Q (8)

x∗
i ≥ 0, µ∗

i ≥ 0 for all i ∈ Q. (9)

From (6) we have

x∗
i =

1
2bi

(λ∗ + µ∗
i − κ∗

i ) for all i ∈ Q. (10)
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In order to find values for x∗
i , λ

∗, µ∗ that satisfy KKT conditions (6)–(9), let S (so far unknown) include

the set of indices that correspond to positive covering diameters in the optimal solution, that is S = {i ∈
Q : x∗

i > 0}. Given S, we have from (8) that µ∗
i = 0 for all i ∈ S and we obtain the following relations:

x∗
i =

1
2bi

(λ∗ − κi), µ∗
i = 0 for all i ∈ S (11)

x∗
i = 0, µ∗

i = κi − λ∗ for all i ∈ Q \ S. (12)

Furthermore, from (11) and (12), we have that

x∗
i > 0 ⇒ λ∗ > κi for all i ∈ S (13)

µ∗
i ≥ 0 ⇒ λ∗ ≤ κi for all i ∈ Q \ S. (14)

Suppose now, without loss of generality, that the κi values are in nondecreasing order. From relations

(13) and (14), we have:

κ1 ≤ κ2 ≤ . . . ≤ κh︸ ︷︷ ︸
S

< λ∗ ≤ κh+1 ≤ . . . ≤ κq︸ ︷︷ ︸
Q\S

. (15)

Hence, S has the form S = {1, . . . , h∗}, h∗ ≤ q, and we obtain the following expression for λ∗ (using

equations (7), (11), (12)):

λ∗ =

1 +
h∗∑
i=1

κi

2bi

h∗∑
i=1

1
2bi

> 0. (16)

Since the feasible region of LRP ′ is a closed convex set and its objective function is convex, this problem

admits a (finite) optimal solution. In particular any local optimum that satisfies the KKT conditions is

an optimal solution for LRP ′ and vice versa. Therefore, there must exist an optimal solution x∗ of LRP ′,

together with corresponding optimal multipliers λ∗ ∈ R, µ ∈ R
q
+, that satisfy the KKT conditions (6)–(9).

Therefore, once the κi are arranged in nondecreasing order, a set of indices S = {1, . . . , h} (1 ≤ h ≤ q)

necessarily exists such that (15) is satisfied, and expressions (11), (12), and (16), return an optimal

solution (x∗, λ∗, µ∗) to LRP ′.

We may find h, that is, the set S = {1, . . . , h} of indices corresponding to selected discs, with a O(log q)

binary search. Because it is the sum of at most q elements, it is possible to compute λ∗ by (16) in O(q)

time. The same time is required to compute the values x∗
i , which are at most q and each is computable

in constant time (using expression (11)). Additional O(q) steps are necessary to determine the value for

the y variables. Hence the following proposition holds:

Proposition 3 Given a set of q nonnegative Lagrangean multipliers κ ∈ R
q
+, the solution of the La-

grangean problem LRP′ can be found in time O(q log q), which is the computational cost of ordering the

multipliers. �

Recalling that zLRP (κ) = zLRP ′(κ)+
∑

i∈Q (fi − κi)y∗
i , we observe that a solution of problem LRP—and

therefore a lower bound for the optimal solution value of P—can be found in time O(q log q).
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4 An exact algorithm for P

In this section, we develop a branch-and-bound algorithm that finds an optimal solution of P . This implicit

enumeration scheme exploits the lower bounds (LB) obtained by a subgradient optimization algorithm

described in Section 4.1 and upper bounds (UB) by an efficient local search-based heuristic (described in

Section 4.2). Branching and subproblem solution strategies are discussed in Section 4.3.

4.1 Lower bound via a subgradient algorithm

For any κ ∈ R
q
+, the optimal solution value zLRP (κ) of LRP provides a lower bound on the value of the

optimal solution value of P . We are now interested in obtaining the best (largest) lower bound by solving

the following Lagrangean Dual Problem:

(DP) z∗LRP = zLRP (κ∗) = max {zLRP (κ) : κ ∈ R
q
+}

In our approach, the solution of DP is obtained by a standard subgradient optimization algorithm that

is summarized in Figure 2. (The actual values of parameters α and ti used in the implementation are

reported later.) The proposed Lagrangean relaxation method not only provides the lower bounds that

Subgradient optimization algorithm for DP.

S1 Set the parameters: choose an α such that 0 < α < 2; LB := −∞;

UB provided by heuristic; κ = 0q.

S2 Solve LRP. Let x∗
i , y∗

i be the optimal variable values obtained for

LRP and zLRP (κ) its optimal value. If x∗
i ≤ y∗

i and κi(y
∗
i −x∗

i ) = 0,

∀i = {1, . . . , q}, then x∗
i , y

∗
i are feasible and optimal for the original

problem P .

S3 Set LB := max{LB, zLRP (κ)}. If LB does not improve for a maxi-

mum number (typically 20) of iterations, set α := α/2.

S4 Set subgradient si = x∗
i − y∗

i and step ti =
α(UB − LB)∑q

i=1 s2
i

.

S5 Update multipliers κi = max{0, κi + tisi}, ∀i = {1, . . . , q}.
S6 If number of iterations exceeds a specified limit: STOP. Else: go to

step S2.

Figure 2: Subgradient algorithm for DP .

we use in our enumeration scheme but it is also exploited in an efficient heuristic procedure which is

presented in the next section.
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4.2 Upper bound via a heuristic algorithm

The basic idea for this heuristic algorithm based on the Lagrangean Relaxation is to obtain a feasible

solution of LRP by establishing all the discs (radars) corresponding to xi > 0 (i.e., i ∈ S) and, possibly,

removing unused discs (i.e., switching off all the unnecessary radars) (i /∈ S).

In general, given a subset S ⊆ Q, we may easily compute feasible values for the coverage diameters

xi, for all i ∈ S, using the KKT conditions—as described in Section 3. Note that the values xi provided

by the solution of LRP ′ are feasible but, in general, they may not be optimal since the corresponding set

of discs S may not be optimal. We may further refine the set S using a simple local search which exploits

the KKT conditions to find the cheapest location and coverage for a given set of selected discs. Figure 3

summarizes the heuristic.

Heuristic algorithm for P .

H1 Choose nonnegative values for penalties (Lagrangean multipliers)

κi, i = {1, . . . , q} (e.g., those found by the subgradient algorithm

in Figure 2).

H2 Sort vector κ in nondecreasing order.

H3 Compute the set S of selected discs and the corresponding val-

ues for the xi using the KKT-based method presented end of

Section 3.1. Then, the cost of this feasible solution is z(S) =

min
∑

i∈S

{
fi + bi

(
1/2bi∑

j∈S 1/2bj

)2
}

.

H4 Perform a local [greedy] search on S for a limited number of itera-

tions, by

(a) Trying to remove a disc (starting from the one with the largest

fi among those selected) and computing the resultant z(S).

Update S if the solution is improved.

(b) Trying to establish a disc (starting from the one with the small-

est fi among those not located) and computing the resultant

z(S). Update S if the solution is improved.

Figure 3: Heuristic procedure for P .

4.3 Exact branch-and-bound algorithm

In this section, we present a branch-and-bound algorithm for P that uses the lower and upper bounds

developed above in Sections 4.1 and 4.2.
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4.3.1 Solution strategy

In the branch-and-bound tree, each node ν represents a subproblem that is defined by (i) a set T of selected

discs (i.e. active radars which must be ON) in the solution, that is T = {i : yi = 1; i = {1, . . . , q}} ⊆ Q,

(ii) a set of discs that cannot be in the solution (i.e. radars that must be OFF) and (iii) a set of

discs that are not yet decided upon (i.e., radars that are not yet fixed to ON or OFF). If a radar is

OFF, we consider the corresponding disc deleted from the set of available discs (radars) for that specific

subproblem. Let Q(ν) be the set of available discs at node (subproblem) ν. Then the generic subproblem

may be formulated as follows:

(P(T, ν))

min
∑

i∈Q(ν)\T

(
fiyi + bix

2
i

)
+
∑
i∈T

(
fi + bix

2
i

)
s.t. xi ≤ yi for all i ∈ Q(ν) \ T (c1ν)∑

i∈Q(ν)

xi = 1 (c2ν)

xi ≥ 0 for all i ∈ Q(ν) (c3ν)

yi ∈ {0, 1} for all i ∈ Q(ν) \ T (c4ν)

Again, similarly to what was done in Section 3.1 for problem LRP, relaxing constraints (c1ν) in a

Lagrangean fashion, using multipliers κi with κi = 0 for all i ∈ T , we obtain problem LRP(T, ν):

min

⎧⎨⎩ ∑
i∈Q(ν)

(
bix

2
i + κixi

)
+

∑
i∈Q(ν)\T

(fi − κi) yi +
∑
i∈T

fi : (c2ν), (c3ν) and (c4ν)

⎫⎬⎭
which, in turn, is equivalent to

min

⎧⎨⎩ ∑
i∈Q(ν)

(
bix

2
i + κixi

)
: (c2ν), (c3ν)

⎫⎬⎭+
∑

i∈Q(ν)\T, fi<κi

(fi − κi) +
∑
i∈T

fi

Neglecting the last two constant summations, we have a problem in the x variables which is a special

instance of LRP ′ defined in Section 3.1. Thus, a lower bound can be computed at each node by solving

the Lagrangean dual of the corresponding problem LRP(T, ν), by means of the procedure summarized in

Figure 2.

An upper bound at the root node is provided by the heuristic in Figure 3.

4.3.2 Branching strategy

At node ν of the enumeration tree, we branch on a binary variable yi, i ∈ Q(ν) \ T , splitting subproblem

ν into two new subproblems ν′ and ν′′. Disc i is selected in ν′ (i.e. yi = 1 and T := T ∪ {i}) and it is

deleted in ν′′ (i.e. yi = 0 and Q(ν′′) := Q(ν) \ {i}).

12
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Let κ∗
i be the optimal values for the multipliers in the solution of the Lagrangean dual, and x∗

i , y∗
i ,

i ∈ Q(ν) \ T the optimal variable values obtained for LRP(T, ν). The branching rule is to branch on a

variable yi, such that y∗
i = 0 and x∗

i > 0. If such a variable does not exist (i.e., x∗ and y∗ are feasible for

the subproblem ν) then branch on variable y∗
i , such that y∗

i = 1, x∗
i < 1 and κ∗

i > 0. If such a variable

does not exist then κ∗
i (y

∗
i − x∗

i ) = 0, for all i ∈ Q(ν) \ T and, therefore, the x∗ and y∗ are (feasible and)

optimal for subproblem ν. The corresponding node in the enumeration tree is then fathomed.

5 Computational experiments

The design of the computational experiments is described in the next subsection while the computational

results are discussed in Section 5.2. All the results reported in this section refer to tests performed on a

3.00 GHz Pentium IV, 1024 MB RAM, running Windows XP. The algorithms have been coded in C++.

See [8] for more details.

5.1 Design of experiments

Any instance of Problem P is characterized by a pair of vectors with q components (b, f), representing

discs’ variable and fixed costs.

We say that a disc i dominates disc j if (bi ≤ bj), (fi ≤ fj), and (bi, fi) �= (bj , fj). In our experiments

no disc pair exists such that one is dominated by the other, since there is no sense in considering dominated

disc types in Q.

Therefore, we impose the following cost relations:

b1 ≤ b2 ≤ · · · ≤ bq and f1 ≥ f2 ≥ · · · ≥ fq.

We start with a special class of instances (“base class”) having the following properties:

• (bi �= bj) and (fi �= fj), for all 1 ≤ i < j ≤ q.

• On the average, bi+1 ≈ bi + 1 for all 1 ≤ i < q.

• bi = fq−i+1, for all 1 ≤ i ≤ q (to exclude dominated cases).

We generate all the instances used in the experiments by suitable modifications of a randomly generated

base class instance. In particular, any instance is identified by the four integers (q, s, t, u), where

q: the number of available discs which determines the size of the instance.

s: amplification factor by which b of the base class instance is multiplied. For instances with this

parameter, on the average, b ≈ {s, 2s, . . . , qs}.

13



Acc
ep

te
d m

an
usc

rip
t 

t: the parameter that characterizes the vector of setup costs f , which is obtained using t ≥ 1 as a

multiplication factor of the b vector determined as above: on the average, fq−i+1 ≈ tbi for instances

with this parameter.

u: the parameter that identifies the configuration for the test instance where a suitable subset of the

cost coefficients bi, or the setup costs fi, or both, have the same value. 10 configurations were

defined and u was labeled 0, 1, . . . , 9 where u = 0 defines the base class where bi and fi all have

different values. For example u = 2 defines the class where the fi for the selected discs in the

optimal base class solution are set to the maximum f value in the base class. Parameter u attempts

to make systematic changes with respect to fi and bi values in various instances. While some other

u labels are described later in this paper, see [8] for more details on the other u labels.

As an example, the class (50, 1, 100, 0) refers to instances with 50 discs, all different types (since u = 0),

cost coefficients bi as in the base class, and setup costs fi amplified by a factor t = 100.

A set of preliminary tests were performed to determine the largest instances that our algorithm is

able to solve optimally, in order to design our experiments. Results are reported in Table 1. All the

instances of this preliminary test-set belong to the class (q, 1, 1, 0). The branch-and-bound algorithm

solved instances up to q = 400 in less than 16 hours. No instance with q = 500 was solved within the

same time limit. Almost all the instances with q up to 200 are solved within one hour.

q 150 200 350 400 500

CPU time 1217.97 s. 2544.76 s. ∼ 3.5 hr. ∼ 15.0 hr. > 16 h

Table 1: Preliminary test-set results

Based on these preliminary results, we planned our experiments with the following sizes: q ∈ {10, 25, 50,

100, 200, 350, 400}. Maximum running time was set to 1 hour (CPU time), except for the case q = 400

where there was no timeout requirements. For each class except the q = 400 case, 10 random instances

were generated and the following average quantities were tracked:

• CPU time.

• Number of nodes in the enumeration tree.

• Depth of the enumeration tree.

• Upper bound at the root node.

• Optimal solution value, if any. (A minus “–” symbol is shown when the optimum is not reached

within the time limit.)

• Best lower bound available after 1 hour.

• Percentage gap (UB − LB)/UB.
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5.2 Results and analysis

Table 2 summarizes the results of the experiments. Each row shows, in order, the quantities of the above

list, for one class of instances. Class name is reported in the first column where an asterisk “∗” denotes

that, in at least one instance of the class, the algorithm did not reach the optimal solution value within

the time limit (i.e. CPU time greater than 3600 sec.). The table also gives the initial “gap” between the

UB and the LB at the root node, computed as (UB−LB)/UB. The results for classes with u = 3, 4, 6, 8, 9

are not reported in Table 2 for the sake of brevity. For these classes, the performance of the algorithm is

indeed comparable or even better than those reported.

First, we highlight the excellent performance of the heuristic: in all the experiments the value found

by this procedure (UBroot) equals the optimal value (opt.) found by the branch-and-bound algorithm.

A few comments are in order:

instance

(q, s, t, u)

CPU

time (s.)
nodes’ # depth UBroot opt. LB gap†

10,10,1,0 1.547 29 10 77.368 77.368 44.8017 42.01%

10,10,1,1 1.469 27 10 80 80 46.696 41.63%

10,10,1,5 1.562 37 10 110 110 75.526 31.64%

10,1,100,0 0.063 0 0 506 506 506 0%

10,1,100,1 0.062 0 0 110 110 110 0%

10,1,100,5 0.047 0 0 506 506 506 0%

100,10,1,0 464.81 987 100 345.96 345.96 135.31 60.89%

100,10,1,1 464.25 1009 100 348.35 348.35 135.74 61.03%

100,10,1,5 932.47 1955 96 496.22 496.22 172.64 65.21%

100,1,100,0 31.937 135 67 200 200 187.44 6.28%

100,1,100,1 32.125 131 65 200 200 187.5 6.25%

100,1,100,5 33.047 131 65 596 596 584.92 1.86%

200,10,1,0 2586.01 2737 200 539.14 539.14 189.31 64.89%

200,10,1,1 2866.91 2527 200 540.8 540.8 189.66 64.93%

200,10,1,5* > 3600 > 2597 ≥ 195 737.98 – 227.93 69.12%

200,1,100,0 208.7 341 169 300 300 241.54 19.49%

200,1,100,1 189.281 361 174 300 300 241.67 19.45%

200,1,100,5 206.38 337 167 696 696 639.7 8.09%

350,10,1,0* > 3600 > 2021 ≥ 345 775.7 – 234.2 69.81%

350,10,1,1 959.97 1827 345 776.91 776.91 234.74 69.79%

350,10,1,5* > 3600 � 1289 ≥ 344 1022.49 – 285.4 72.09%

350,1,100,0 985.38 719 350 450 450 301.56 32.99%

350,1,100,1 959.97 703 350 450 450 298.51 33.67%

350,1,100,5 964.44 673 328 846 846 700.2 17.23%

400,1,1,0 36705.2 17373 400 84.71 84.71 24.28 71.34%

Table 2: Experiments results. († Gap is computed as the initial (UB −LB)/UB, where LB is the (initial) lower

bound at the root node.)
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1. Not surprisingly, branch-and-bound computational time is strictly related to the enumeration tree

size: Table 3 shows strong positive correlation of CPU time with the number of nodes in the

enumeration tree.

2. For a given number of discs q, we note that the CPU time does depend on the particular cost

configuration, that is, on the particular pair (s, t). The most difficult instances have t = 1 (i.e.,

bi ≈ fq−i+1); and, viceversa, the larger the t in comparison to s, the faster the computation.

3. Classes with u = 2 and u = 5 are the hardest. Parameters are chosen so that finding the set of

selected discs becomes more difficult. For any instance I of the base class, we build the corresponding

u = 5 instance I ′ as follows. Let S be the set of selected discs in the optimal solution of I. The

costs in I ′ are: b′i = bi if i �∈ S, b′i = max{b1, . . . , bq} if i ∈ S. Analogously f ′
i = fi if i �∈ S,

f ′
i = max{f1, . . . , fq} if i ∈ S.

The u = 2 class is designed similarly but with b′i = bi, for all i = 1, . . . , q. (Experimental results for

the u = 2 class were similar to those of the u = 5 class; therefore Table 2 reports only the latter.)

4. Figure 4 shows the CPU time cumulative distribution. The histogram was obtained empirically

over 90 instances (with q = 25): 80% of the instances are solved in a time smaller than 2.6 s. while

the largest CPU time is an order of magnitude higher (17.2 s.).

q 10 25 50 100

ρnodes 0.982 0.998 0.999 0.999

Table 3: Correlation coefficient between CPU time and number of nodes of the enumeration tree.
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Figure 4: CPU time cumulative distribution (q = 25, time in seconds).

We noted previously that fixed costs are related to the choice of the subset S and they heavily affect

the computational effort required by an instance. An evidence of this fact is illustrated in Table 4 where

the results of the experiments with q, s, t = 10, 1, 1 are compared for three values of u (u = 0, 1, 3). Note

that the u = 0 class is the base class.
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instance

(q, s, t, u)
S∗ Opt. radii

xi, i ∈ S∗

10,1,1,0 {9,10} {0.526, 0.474}
10,1,1,1 {9,10} {0.5, 0.5}
10,1,1,3 {7,8,9} {0.377, 0.330, 0.293}

Table 4: Set S∗ (optimal set) response to fi and bi variations for q = 10 and u = {0, 1, 3}.

Given an instance I of the base class, we build the corresponding u = 1 (u = 3 respectively) instance

I ′ as follows. Let S be the set of selected discs in the optimal solution of I. The costs in I ′ are:

b′i = max{b1, . . . , bq} (f ′
i = min{f1, . . . , fq} respectively) for i ∈ S. All the other parameters remain equal

to those in the base class.

When the bi are varied (compare classes with u = 0 and u = 1 in Table 4) the optimal solutions are

slightly different. However, when the fi vary (compare classes with u = 0 and u = 3) the two optimal

solutions drastically differ from each other: there are three discs selected instead of two.

6 Conclusions and future work

In this paper we introduced and addressed the problem of covering a single line segment with radar

sensors having a circular field of view. When the sensors are required to have identical radius, a simple

polynomial search solves for optimal radius and number of sensors. When the sensors are modeled with

variable diameter discs the problems becomes hard. We provided an exact solution algorithm which is

based on a Lagrangean relaxation and a subgradient algorithm to find a lower bound (see Figure 2).

A feasible solution is provided by the heuristic summarized in Figure 3. These bounds were exploited

to design a branch-and-bound algorithm. Extensive computational testing, based on approximately 400

experiments, showed that the developed heuristic performs very well; the upper bounds were equal to the

optimal solution whenever the latter was known (see Table 2). The experiments also show that setup

costs play a crucial role both in computational effort and attainment of the optimal solution set.

Several directions for future work are being pursued. The two-arc network and planar tree network

cases are being investigated (both for single and multiple discs types, for fixed and variable radius). Since

discs can be located both on the arcs and on the plane, these are mixed network–planar problems and

the development of locational models and algorithms is indeed very challenging.
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