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A B S T R A C T

A complex regulatory network of signaling pathways safeguards genome integrity following DNA

damage. When double strand breaks occur several enzymes and mediators are recruited to the sites of

lesion to release a network of DNA repair processes referred to as DNA damage response (DDR). c-Abl

interacts in the nucleus with several proteins implicated in distinct aspects of DNA repair. This suggests

that c-Abl may be involved in the regulation of double strand break repair. The involvement of c-Abl in

DNA repair mechanisms came into the spotlight in female germ cells under genotoxic stress. Recent

findings have implicated c-Abl in a cisplatin-induced signaling pathway eliciting death of immature

oocytes. Pharmacological inhibition of c-Abl by Imatinib (STI571) protects the ovarian reserve from the

toxic effect of cisplatin. This implies that the extent of c-Abl catalytic outcomes may tip the balance

between survival (likely through DNA repair) and activation of a death response. Many observations

indicate that timely ubiquitin-modifications and signal decoding are implicated in regulating DNA

repair. Here, we discuss some connections between phosphorylation- and ubiquitin-mediated signaling

at the damaged sites. We speculate about multiple interactions that may occur between c-Abl (and

‘sensor’ kinases) with ubiquitin-related proteins involved in DDR. Additional work is required to

understand the complexity of the physiological outcomes of c-Abl in DDR. However, a fine-tuning of

nuclear outcomes, through pharmacological inhibition of c-Abl, may provide novel paradigms for DDR

and, potentially, therapeutic strategies for cancer treatment.

� 2011 Elsevier Inc. All rights reserved.
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1. The emerging central role of c-Abl in modulating the cell
response to DNA damage

The cellular response to DNA damage (DDR) relies on a network
of multiple interconnected signaling pathways acting in concert to
minimize the dangerous effects of DNA double strands breaks
(DSBs). The phosphatidylinositol 3-kinases (PI3K)-related kinases
ataxia-telangiectasia mutated (ATM), ATM and Rad3-related (ATR)
and DNA-activated protein kinase (DNAPK) are activated early by
distinct DNA lesions and start a cascade of events signaled by the
rapid phosphorylation of several proteins implicated in processes
such as DNA repair, cell cycle arrest and apoptosis [1–3]. Although
the PI3K related enzymes are considered major players in the DNA
damage cell response, a fourth unrelated kinase, c-Abl, has more
recently been associated to various aspects of the DDR [4]. c-Abl is
a non-receptor tyrosine kinase that has the potential to bind to
several proteins [5]. It has been implicated in several cellular
pathways, including those originating from growth factor stimu-
lation, cell adhesion, oxidative stress and DNA damage [6–9]; its
activity is tightly regulated and it can be promptly activated
following ionizing radiation and other types of genotoxic insults
[10,11]. c-Abl accumulation leads to cell cycle arrest and to
programmed cell death in cultured cells. Several c-Abl targets
(YAP1, TP73, TP63, MDM2) are indeed important modulators of
DNA damage-induced apoptosis. At the same time, many partners
and substrates of c-Abl are known mediators of DNA repair [5]
(among them, DDB1, DDB2, ERCC6, RAD9A, RAD51, RAD52 and
WRN, ATM, ATR, DNAPK, BRCA1, TopBP1, and MSH5, see Fig. 1),
suggesting that c-Abl may be implicated in the regulation and/or
assembly of DNA repair complexes. In spite of its emerging central
role in DNA repair, the mechanistic details are still poorly
understood and the physiological functions, if any, of many of
the interactions that have been reported remains elusive [12,13].
Wang et al. have recently reported that c-Abl is involved in the
activation of ATM and ATR kinases following doxorubicin
treatment. c-Abl deficient primary MEFs, following genotoxic
stress, failed to activate both ATM and ATR and their downstream
effectors [14]. These observations suggest that c-Abl may have a
significant role in the activation of the key upstream molecular
events governing the initiation and propagation of DDR [12].
Fig. 1. Abl-interacting proteins in the DNA damage response. In red ellipse proteins invo

Green ellipse contains proteins involved in cell cycle arrest. Proteins directly involved in u

Abl substrates with the exception of TREX1, CABLE2, BRCA1, and DDB2.
Additional insights on the central role played by c-Abl in
modulating the interplay between DNA repair and induction of
apoptosis came from the study of female germ cells under
genotoxic stress [15]. Intraperitoneal injection of cisplatin in
newborn female mice leads to depletion of the follicle reserve and
to long-term infertility. Recent findings have implicated c-Abl in a
cisplatin-induced signaling pathway eliciting death of immature
oocytes [16]. A p53-related protein, TAp63, is a critical down-
stream effector of this pathway. Inhibition of c-Abl by Imatinib
(STI571) protects the ovarian reserve from the toxic effect of
cisplatin. This implies that the extent of c-Abl catalytic outcomes
may tip the balance between survival (likely through DNA repair)
and activation of a death response. Our current model suggests
that c-Abl may function as a hub assisting the progression of repair
but eventually promoting cell death when DNA breaks prove
irreparable [13]. Although we have shown that co-treatment with
Imatinib has a protective effect on the ovarian reserve [17], we
need to clarify the mechanisms underlying such an effect. The
kinetics of c-Abl activation following DNA damage represents an
important immediate issue to be addressed. Additional work is
required to understand the complexity of the physiological role of
c-Abl in DDR, and its involvement in the modulation of the many
posttranslational mechanisms, including ubiquitination, underly-
ing the DDR.

1.1. Surfing at the break point

Chromatin is a complex scaffold formed by chromosomal DNA
wrapped around the histone core. This scaffold is not static.
Chromatin modifications are essential for modulation of many
cellular processes including transcription, replication and DNA
repair. Two classes of enzymes can modify chromatin structure.
One class consists of large multi-protein complexes that use ATP
hydrolysis to alter the nucleosome position or composition within
chromatin [18]. The second class mediates covalent modifications
of histone tails. Posttranslational modifications of histones are
implicated in the DNA damage response [19,20]. In particular,
histone modification induced by members of the ubiquitin enzyme
family is one of the main defensive strategies adopted by DNA-
injured cells [21]. Ubiquitin-conjugation seems to modulate the
lved in apoptosis, in blue those involved in DNA damage signaling and DNA repair.

biquitin-signaling of DDR are in violet. All these proteins have also been reported as



Fig. 2. DSBs are recognized by Mre11–Rad50–Nbs1 (MRN) complex, which

promotes the activation of ATM. H2AX phosphorylation by ATM provides a docking

site for MDC1. The ubiquitin ligase RNF8 (recruited through its FHA domain) in

tandem with UBC13 ubiquitylated H2A and gH2AX. Signaling of the breaks is then

enhanced by the recruitment of E3 ligase enzyme RNF168 (through its MIU domain)

that acts by extending K-63 ubiquitin chains. The deubiquitinating enzyme OTUB1

suppresses RNF168-dependent ubiquitination by direct inhibition of the E2 ligase

UBC13. RAP80 associates to ubiquitin by its UIM domain and recruits the BRCA1-A

complex, through the interaction with the scaffold protein Abraxas. The BRCA

complex contains the ubiquitin protease BRCC36 that removes ubiquitin on

histones H2A and H2AX, antagonizing the RNF8/RNF168-dependent ubiquitination.
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assembly of the many components of the genome surveillance
system. Several ubiquitin-signaling paths influence various
aspects of genome-integrity maintenance and both monoubiqui-
tylation and polyubiquitylation are emerging as versatile strate-
gies to modulate protein–protein interaction networks [22–28]. A
model of a complex ‘ubiquitin landscape’ at the damaged sites is
emerging, albeit incomplete and poorly understood [29,30].
Particularly noteworthy is the extensive crosstalk between
ubiquitin-modifications and phosphorylation-mediated pathways
in DDR. A complex web of molecular interactions determines
whether and how to repair the damage or rather let the injured cell
die [31–34]. Here, we discuss some connections between
phosphorylation- and ubiquitin-dependent signaling at the
damage sites. We speculate about multiple interactions that
may occur between c-Abl (and ‘sensor’ kinases) with ubiquitin-
related proteins involved in DDR.

2. DNA damage response: sensing, repairing or signaling to
death

Intricate mechanisms are set in motion for counteracting the
potentially dangerous effects of DNA lesions. These mechanisms
are challenged in chemotherapy regimens for cancer treatment.
Crosslinking agents are among the most widely used and most
effective anticancer drugs. They form covalent adducts on cellular
DNA either on the same strand (intrastrand) or between the two
complementary strands (interstrand). How are they repaired? The
main players are nucleotide excision repair (NER), base excision
repair (BER), mismatch repair (MMR) and double strand break
(DSB) repair. Interstrand crosslinks may induce double strand
breaks as an intermediate step during repair. So, cells may use
several DNA repair pathways in a concerted way. It is beyond the
scope of this review to discuss these repair mechanisms in detail.
Interested readers are directed to several reviews on this subject
[35–40]. Here, we will focus on DSBs since very recent studies have
indicated that transient abrogation of c-Abl activity modulates DSB
repair pathway mediated by either homologous recombination
repair (HRR) or nonhomologous end-joining (NHEJ) mechanisms
[41,42]. In addition, in germ cells, DSBs occur normally during
meiosis to promote homologous recombination and by doing so
genetic diversity [43]. Mice deficient in c-Abl exhibit defects in
spermatogenesis [44]. This suggests that c-Abl has a role in the
maintenance of genome integrity by dealing with DSBs in meiotic
cells.

Three distinct protein complexes act as sensors, transducers and
effectors of DDR induced by DSBs. Many components of these three
layers interact with each other and converge toward different
outcomes depending on the severity of the damage and on the cell
type. The activation of checkpoints slows down cell cycle
progression until lesions are resolved. If unrepaired DSBs persist,
cells undergo either apoptosis or senescence to prevent the
accumulation of potentially tumorigenic mutations [45–47].
Female germ cells are extremely sensitive to DNA insults compared
with somatic cells [48]. In line with this, ovarian failure and
infertility are often off-target consequences of chemotherapeutic
treatment. Oocytes from follicle reserve are arrested in meiosis I;
DNA damage is either quickly repaired or triggers a robust cell
degeneration. Intriguingly, abrogation of c-Abl activity has a
protective effect on the ovarian reserve under genotoxic stress.
Despite the diversity regarding the cell type, the efficiency of repair
and signaling of the breaks is enhanced by the concentration of
factors in the proximity of the lesion. At the damaged site, the DDR
can be presented as a sequential assembly of protein complexes
(Fig. 2).

DNA repair initiated by sensors of breaks, – including MRN
complex, ATM – relies on the activity of different E3-ligases namely
RNF8, HERC2 and RNF168. Among the many targets of ATM, the
histone H2A variant H2AX is phosphorylated on Ser-139. This
modification seems to be a recruitment signal for proteins with
dedicated phospho-S/T recognition domains such as the FHA [49]
or BRCT domain [50]. The RING-type ubiquitin ligase RNF8 [34,51–
54] ubiquitinates H2AX and also seems to shift the recruitment
mode from being phosphorylation-based to being ubiquitin-based.
In spite of that, many reports indicate that phosphorylation of
H2AX is not essential for DNA repair [55,56], suggesting that other
molecules can orchestrate the assembly of DNA repair complexes.

Noteworthy, DNA damaging complexes rely on protein
modularity associated to posttranslational modifications of
binding partners. Posttranslational modifications are also revers-
ible, implying as a consequence, the dynamic nature of any kind of
protein–protein interactions depending on such modifications.
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Large complexes are so built through specific recognition between
posttranslational modifications and decoding domains. However,
following DDR progression, posttranslational modifications of
proteins, intimately involved in DNA repair, can also be edited by
specific enzymes thus arresting the repair process and triggering
an alternative pathway leading to cell death. Therefore, phospha-
tases (PPI) and deubiquitylases (DUB) offer additional levels of
complexity required for the fine-tuning of DDR pathways in
injured cells.

2.1. DNA damage network

In the biological context most protein and gene networks do not
have the topological properties of random networks but are rather
characterized by a high clustering coefficient and by a degree
distribution that is scale-free [57]. If we restrict our analysis to the
DDR interactions, most of the proteins (nodes) have only few edges
(connections) whereas few proteins (hubs), such as ATM, or p53
[58] have a vast number of connections. However, the assembly of
large complexes in the vicinity of the lesions follows a strictly
hierarchical process [59] based on domain modularity and
localized concentration of factors.

Recently, the ‘phosphorylation landscape’ of DDR has been
expanded through the identification of novel putative substrates of
ATM as well as of some ATM independent substrates [60]. These
observations underline the vast complexity of the cellular
responses in the DDR pathways necessary to maintain genomic
integrity and cellular homeostasis. Rapid kinetics for most of the
phosphorylation events suggests the existence of similar temporal
patterns also for the dephosphorylation response [60]. Shiloh and
colleagues have recently explored such kinetics through analysis of
system level networks of perturbed cells [60]. Cells were examined
after radiomimetic treatment at distinct time points. The analysis
of isolated phosphopeptides, through label-free quantitative LC–
mass spectrometry, was carried out to follow dynamics of double
strand breaks (DSBs)-induced phosphoproteome. They found that
the dynamics of the DDR-induced changes are complex and
include both phosphorylation and dephosphorylation processes.
These events, involving many interconnected proteins (or com-
plexes), indicate a robust and comprehensive cellular response to
DNA damage. One important observation regarding the involve-
ment of phosphatases is that they are serving as shutoff signals of
DDR-signaling. Moreover, the authors found that 40% of double
strand breaks (DSBs)-induced phosphorylation was not ATM-
dependent but is potentially induced by several other kinases. This
suggests that, although ATM signaling is associated to DSBs, only a
fraction of DSBs repair is ATM-dependent [61]. Interestingly, the
data from Shiloh and coworkers indicate that the control of DDR
events is based on the sustained activity of ATM over an extended
time. This mechanism probably serves to counteract the opposing
effects mediated by phosphatases. Prolonged ATM activity may be
involved in ensuring its retention at the damaged site where ATM
acts as a fuel for the signaling cascade.

Ubiquitylation is also an immediate modification underlying
the DDR protein–protein networks. Its interplay with phosphory-
lation is crucial in damage repair and DNA signaling. Histone
decoration by ubiquitin-chains has been recently appreciated,
fuelled, in part, by the discovery of enzymes responsible for these
modifications [28]. Large complexes allow recognition and setting
in motion of mechanisms to mark (through ubiquitin-tags) the
sites of lesion for an appropriate response [51–54].

3. Ubiquitin-signaling in DDR

Protein modification by a single ubiquitin moiety can have
several diverse outcomes, ranging from the control of endocytosis
and intracellular trafficking to the regulation of chromatin
structure transcription and DNA damage processing [24,62].
However, the complexity of ubiquitin signaling is achieved
through its ability to form chains. Polymeric chains can be built
on all of ubiquitin’s seven Lys residues. Different linkages of
ubiquitin moiety or chains adopting distinct geometries ensure the
functional complexity of signaling (i.e. Lys-48 chains are linked to
the proteasome degradation, while, linear and Lys-63 chains seem
to mediate different functions). Both chains can modulate several
pathways related to genome stability [63]. Ubiquitin-chains
provide recognition sites for complexes assembly and are
necessary for signal propagation. Several types of ubiquitin-
binding domains (UBDs) have been recently characterized [64–66].
Notably, recognition can be direct or modulated through binding
with other domains necessary to gain specificity toward particular
geometries of ubiquitin polymers. To date several ubiquitin-
modifications and signal decoding are implicated in regulating
DNA repair [67].

3.1. Make ubiquitin signals reversible – dynamics through DUBs

Ubiquitin-decoration is achieved through the sequential
cascade of activating (E1), conjugating (E2) and ligating (E3)
enzymes; such events can occur through the conjugation of single
ubiquitin or polyubiquitin chains (homotypic chains, or heterolo-
gous, forked or mixed). The vast variety of ubiquitin-signals is
recognized and decoded by dedicated ubiquitin-binding domains.
In addition, tight control is maintained by the action of DUBs and
by the existence of crosstalk between the ubiquitin-network and
other posttranslational modifications. In short, high levels of
specificity are achieved through (1) specific E2–E3 pairs, (2)
recognition of certain ubiquitin branches mediated by individual
UBD and eventually, (3) by a presumed relationship between
functional outcomes and distinct ubiquitin species [68]. Fine-
tuning of ubiquitin-pathways relies on protein complexes, timely
regulated in space, mediated by scaffold proteins or chaperones
[69,70]. Targeting of E2–E3 pairs in response to specific stresses is
mediated by posttranslational modifications, recognition through
surrounding domains and adaptors [68]. Ubiquitin-conjugation
can mediate nuclear translocation; it can also impact on protein
activity, inducing conformational changes with a positive [71] or
negative effect [72]. In some circumstances, phosphorylation
directly regulates E3 ligase activity [73,74] or indirectly, controls
the timing of ubiquitin-attachment and removal by affecting
nuclear translocation of deubiquitylating enzymes (DUB) [75].

How the versatility of ubiquitin-complexes at the site of lesion
is accomplished? Six classes of UBDs are involved in the response
to DNA damage (UBA, UIM, MIU, UEV, UBM, and UBZ [67]. Their
recognition occurs through binding of a hydrophobic motif on
ubiquitin and of specific regions on the substrate. Such complexes
can be modulated by specific proteases (DUBs). DUB activity is
induced through binding with substrate; a further regulation is
achieved through posttranslational modifications (phosphoryla-
tion, ubiquitin or ubiquitin-like modifications) and/or specific
binding to accessory molecules that impinges on substrate
recognition and/or subcellular localization [25,68]. USP1 auto-
deubiquitination is a remarkable example of DUB regulation in
DNA repair [76].

DUBs can be distinguished into five distinct classes depending
on their domain structure [25]. Their importance in cellular
processes is highlighted by recent reports [77,78]. DUBs operate
through cleavage of ubiquitin moiety or ubiquitin-linked chains
from a substrate. The DUBs activation impinges on (1) recycling of
free ubiquitin for cell homeostasis maintenance, (2) rescuing
proteins from degradation, and (3) editing the length or type of
ubiquitin-modification. Specific E3–DUB (or E2–DUB) pairs are
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crucial for the fine-tuning of ubiquitin-conjugation directly
affecting enzymatic activation or proteosomal targeting [79].
Large complexes, formed through ubiquitin receptors (UBDs) or by
conjugation with small ubiquitin-like modifier (SUMO), in tandem
with DUBs are both required for signaling at damaged sites.

Much of the current understanding of DDR is based on the study
of ATM and ATR kinases. One of the earliest events is recruitment
and activation of the ATM at the damaged DNA sites through the
Mre11–Rad50–Nbs1 (MRN) sensor complex. This event clearly
illustrates the crosstalk between the ubiquitin-network and
posttranslational modifications of DDR. Within minutes after a
DSB generation, ATM phosphorylates histone H2AX to become g-
H2AX. g-H2AX unleashes a cascade of chromatin modulation and
DNA repair events through the recruitment of MDC1 (mediator of
DNA damage checkpoint 1) [80]. This is followed by accumulation
of two closely related RNF ubiquitin ligases, RNF8–RFN168
[26,52,54,81,82] in tandem with the HECT-domain protein HERC2
[83]. Further recruitment of SUMO-ligase PIAS1 and PIAS4 [84,85]
then triggers (and amplifies) binding of ubiquitin and SUMO onto
histones near the DNA lesions, allowing local recruitment of
important repair factors, including 53BP1 and another ubiquitin
ligase, BRCA1 [1].

Moyal et al. have recently reported a direct positive effect of
ATM on monoubiquitylation of H2B at damaged sites. They observe
that the E3 ubiquitin ligase, a heterodimeric complex of the RING-
finger–RFN20/RFN40 is phosphorylated by ATM. This event is
required for H2B monoubiquitylation, for timely recruitment of
components involved in the two major DSB repair pathways (NHEJ
and HR) so facilitating DNA repair via both mechanisms [74].
Interestingly RNF20 is also involved in the recruitment of
chromatin-remodeling factor SNF2h independently from H2AX
[86]. Depletion of RNF20 impairs resection of DNA ends and
recruitment of RAD51 and BCRA1. Cells lacking RNF20 or SNF2h or
expressing H2BK120R mutant exhibit pronounced defects in
homologous recombination repair (HRR) and an enhanced
sensitivity to radiation. Interestingly, the function of RNF20 in
HRR can be partially bypassed through forced chromatin relaxa-
tion. This suggests that RNF20-mediated H2B ubiquitination at
DSBs plays a critical role in HHR through chromatin remodeling
[86].

Chromatin modulation is a crucial event of the DNA repair
cascade. Nonsense mutations in the RNF168 gene impair retention
of 53BP1 and BRCA1 at sites of DSB repair [87]. This finding
supports the role of the RNF8–RNF168–HERC2–BRCA1 chromatin
ubiquitin-ligase complexes [26,85] for genome integrity. Despite
considerable efforts, the precise function of BRCA1 in the DNA
damage response remains unclear. In addition, BRCA1 seems to
promote homologous recombination. BRCA1 has an ubiquitin-
ligase activity, it ubiquitylates CtIP a protein involved in DSB
resection [88]. The 53BP1 protein promotes other pathways of
repair by blocking resection, whereas the 53BP1 sumoylation by
PIAS proteins [83,84] may promote its displacement from DSBs,
releasing the barrier to resection.

In short, non-degradative ubiquitylation plays a central role in
the DNA damage response. RNF8 and RNF168, in tandem with the
E2 ubiquitin conjugating enzyme UBC13 catalyze the formation of
Lys-63 linked chains at the DSBs sites to promote their faithful
repair. By contrast, OTUB1, an ovarian tumor protease acting as a
DUB, counteracts RNF8/RNF168-dependent ubiquitin-chains for-
mation at damaged sites [89]. Interestingly, OTUB1 is not involved
in the cleavage of polyubiquitin chains but directly targets UBC13
[77]. For this aspect, OTUB1 is an atypical DUB, that prevents
ubiquitin ligation, rather than detaching of bound ubiquitin, and in
this way inhibits DNA repair. In addition, OTUB1 is targeted by
phosphorylation, thus providing another level of control to
modulate its affinity for UBC13. Nakada et al. found that inhibition
of OTUB1 expression restores the process of homologous
recombination in cells in which ATM kinase is inhibited [90].
Thus, OTUB1 depletion can in principle mitigate DNA-repair
defects.

Several DUBs have been reported to affect the ‘ubiquitin
landscape’ present at DNA breaks [68]. UCH37/UCHL1 interacts
with chromatin-remodeling complex involved in nucleosome
sliding (INO80, inositol-requiring 80) [91]. Other DUB, such as
BRCC6 (BRCA1–BRCA2 containing complex subunit 36), may act on
the RNF8–UBC13 ubiquitin ligase complex deubiquitylating
gH2AX [92]. In addition, DUBs involved in DNA damage signaling
are USP1 that targets PCNA (proliferating cell nuclear antigen) [76],
FANCD2 and FANCI (the Fanconi anemia proteins) [93,94], and
USP3 and USP16 that directly deubiquitylate histone H2A [95,96].

3.2. Defying death after DNA damage: does ubiquitin-signaling set

threshold?

The experimental results compiled above suggest that the
interplay between pair activities of phosphorylation or dephos-
phorylation (and also ubiquitination or deubiquitination) is
required for the fine-tuning of DDR. It may be part of the reason
by which the DDR decay in a timely manner, after damage repair,
allows a safety path for the cells. The immediate recruitment of
factors to DSBs, and the localized concentration of proteins might
be particularly important for signaling amplification and to set
threshold levels of DNA damage.

DDR depends on the recruitment of the sensors/transducers to
the damaged site. Their activation leads cells to a decision point
between survival and death. Which are the mechanisms underly-
ing such a decision? Survival of DNA-injured cells depends on
removal of the damage. A logical hypothesis is that the
amplification of the signaling cascade has the feasibility to drive
cells toward death as a default path if not attenuated.

Why an attenuated activation of c-Abl ends in a survival path in
female germ cells? c-Abl presumably affects downstream cascades
through phosphorylation of several proteins or substrates of
enzymes activated/regulated by c-Abl. Pharmacological inhibition
of c-Abl could impact on distinct levels of such signaling. A
reasonable hypothesis is that c-Abl activation may impinge
directly or indirectly on ubiquitin-signaling of DDR. According
to this, a recent report provides evidence that Abl regulate foci
formation of protein like 53BP1, TopBP1, RAD51 and BRCA1
following DNA damage [14].

3.3. Working hypothesis

Recent findings from Wang et al. indicate that c-Abl may be
necessary for the full activation of ATM and ATR and their
respective downstream signaling pathways. According to this, c-
Abl phosphorylates ATM, thus amplifying ATM activation and
signaling. Phosphorylation events mediated by ATM are, in turn,
necessary for recruitment of ubiquitin-related enzymes such as
RNF8, RNF20–RNF40 and BMI1 (polycomb group proteins) in
proximity of DNA breaks. In particular, BMI1 is involved in DNA
damage-induced monoubiquitination of H2A. BMl1 interacts with
RING1B (RNF2) to form a heterodimer required for PRC1 mediated
histone ubiquitination, thus contributing to efficient HR mediated
DNA repair [97]. Loss of BMI1 sensitizes cells to ionizing radiation
to the same extent as loss of RNF8. In the absence of BMI1, the
recruitment to damaged sites of 53BP1, RAP80 and BRCA1 is
strongly impaired [98].

In addition, c-Abl directly may impinge (through phosphoryla-
tion or its binding) on several proteins and/or enzymes involved in
ubiquitin-signaling of DDR. In line with this, c-Abl interacts with
BRCA1 a tumor suppressor crucial for cell-cycle arrest and DNA



Fig. 3. Model for integrated signaling functions of c-Abl. Abl may regulate double strand breaks repair and/or cell death to damage. The extent of Abl catalytic outcomes seems

to shift the balance between life and death. A reasonable hypothesis is that c-Abl presumably affects downstream pathways through phosphorylation of several proteins and/

or enzymes involved in ubiquitin-signaling of DDR. Solid line: direct interaction; dashed line: indirect effect; ubiquitin-related proteins are colored in violet; modulators of

DNA damage-induced apoptosis are colored in green; DNA repair and DNA signaling proteins are colored in blue.
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repair. BRCA1, in complex with another RING-domain BARD1
exhibits ubiquitin-ligase activity. Few targets for this activity have
been characterized in vivo. The BRCA1/BARD1 can ubiquitylate
histones (H2A and H2B) in the context of nucleosome [99]. This
suggests that BRCA1 may also affect directly nucleosome structure
and dynamics through its ubiquitylation activity. In addition, c-Abl
directly phosphorylates ubiquitin-related proteins such as DDB1
[100] (involved in complex with DDB2 in DNA repair through NER
mechanism), WRN a helicase containing an UBD domain involved
in DNA repair [101], and finally the E3 RING ligase MDM2 [102]
(Fig. 3).

MDM2 (along with MDMX) is a part of a multi-component E3-
complex that targets p53 for proteasomal degradation [103,104].
Recently, Mayo and colleagues found that multi-site phosphoryla-
tion of MDM2 by c-Abl is important for the MDM2–MDMX
complex formation [105]. One of the tyrosine residues important
for complex formation is proximal to the RING domain of MDM2.
This suggests a possible role for this modification in modulating
RING domain interactions. Interestingly, RING domain dimeriza-
tion appears to be a general requirement for the assembly of an
active ligase complex [106]. Thus, c-Abl phosphorylation provides
a mechanism to regulate ubiquitination by modulating the
oligomerization of E3 MDM2–MDMX complexes.

4. Outlook

Several complex cellular responses can be understood only by
thinking in terms of a dense web of interactions and feedbacks.
Many of the most pressing issues, related to DDR in cells, cannot
longer be solved simply by breaking system into parts. Taking few
major hubs out of the DNA damage network will simply
disassemble it in rather isolated protein–protein connections.
Timely series of ubiquitin-modifications and signal decoding are
implicated in regulating DNA repair. The current model is that
histone ubiquitylation serves as a beacon for the recruitment of
effector proteins. Future studies will likely uncover new motifs
that recognize single or combinatorial modifications on chromatin.
Specific E2–E3 pairs seem to be required for distinct ubiquitin
chains, however research is needed to clarify the importance of
ubiquitin branching in a physiological context and to identify and
characterize more potential DUBs. We need to clarify how different
ubiquitin-marks are generated and decoded by UBDs in the cells.
We need to know how modifying enzymes are targeted to their site
of action and which environmental or metabolic factors affect their
activity.

Here, we speculate about some connections occurring between
phosphorylation- and ubiquitin-mediated signaling at the dam-
aged sites. Multiple interactions seem to occur between c-Abl (and
‘sensor’ kinases) with ubiquitin-related proteins involved in DDR.
The kinetics of c-Abl activation is certainly an important
immediate issue to be addressed. Novel paradigms for DDR may
arise from a better understanding of the crosstalk between
phosphorylation signals mediated by c-Abl and ubiquitin-related
changes on chromatin.
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