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Muscle activities underlying many motor behaviors can be generated by a small number of
basic activation patterns with specific features shared across movement conditions. Such
low-dimensionality suggests that the central nervous system (CNS) relies on a modular
organization to simplify control. However, the relationship between the dimensionality of
muscle patterns and that of joint torques is not fixed, because of redundancy and non-
linearity in mapping the former into the latter, and needs to be investigated. We compared
the torques acting at four arm joints during fast reaching movements in different directions
in the frontal and sagittal planes and the underlying muscle patterns. The dimensionality
of the non-gravitational components of torques and muscle patterns in the spatial,
temporal, and spatiotemporal domains was estimated by multidimensional decomposition
techniques. The spatial organization of torques was captured by two or three generators,
indicating that not all the available coordination patterns are employed by the CNS. A
single temporal generator with a biphasic profile was identified, generalizing previous
observations on a single plane. The number of spatiotemporal generators was equal to the
product of the spatial and temporal dimensionalities and their organization was essentially
synchronous. Muscle pattern dimensionalities were higher than torques dimensionalities
but also higher than the minimum imposed by the inherent non-negativity of muscle
activations. The spatiotemporal dimensionality of the muscle patterns was lower than the
product of their spatial and temporal dimensionality, indicating the existence of specific
asynchronous coordination patterns. Thus, the larger dimensionalities of the muscle
patterns may be required for CNS to overcome the non-linearities of the musculoskeletal
system and to flexibly generate endpoint trajectories with simple kinematic features using
a limited number of building blocks.
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INTRODUCTION
How the central nervous system (CNS) coordinates a large num-
ber of muscles to generate complex motor behaviors is an open
question. The dynamic complexity of the skeletal system with
its many degrees of freedom (DoF), the versatility of the motor
system, capable of accomplishing many different tasks, and the
redundancy and non-linearity of the muscular apparatus all pose
challenging control problems. A modular architecture has been
proposed as a way for the CNS to tackle the complexity of motor
control. In a modular architecture control is subdivided among
basic building blocks, allowing for an efficient yet flexible task
decomposition. In particular, a modular generation of the mus-
cle patterns might allow for a low-dimensional representation
of the motor output incorporating knowledge on the dynamic
behavior of the musculoskeletal system into a small set of basic
functions shared across tasks and conditions. Recently, the mod-
ular control hypothesis has been supported by observations of
low-dimensionality in the muscle patterns underlying a variety

of motor behaviors in different species. Using multidimensional
decomposition techniques such as principal component analy-
sis (PCA), factor analysis (FA), independent component analysis
(ICA), and non-negative matrix factorization (NMF) it has been
possible to reconstruct the muscle activation patterns as the
combination of a small number of components (Tresch et al.,
2006; Giszter et al., 2007; Ting and McKay, 2007; Bizzi et al.,
2008; Tresch and Jarc, 2009; Lacquaniti et al., 2012; d’Avella and
Lacquaniti, 2013). These components may capture different fea-
tures of the muscle patterns shared across task conditions, such
as specific relationships in the strength of activation of groups
of muscles, i.e., muscle synergies (Tresch et al., 1999; Ting and
Macpherson, 2005) or M-modes (Krishnamoorthy et al., 2003),
specific time-courses of the activation waveforms for all muscles,
i.e., temporal components (Ivanenko et al., 2004; Dominici et al.,
2011), and specific collections of muscle activation waveforms,
i.e., time-varying muscle synergies (d’Avella et al., 2003, 2006)
but they all construct muscle patterns by linear combinations of a
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small number of generators. However, even if muscle patterns can
be accurately described by such generators, task accomplishment
depends on the actual joint torques and the consequent joint
motions produced by muscle contractions. Thus, to better under-
stand how motor tasks may be accomplished by the combination
of a few muscle pattern generators it is necessary to assess the rela-
tionship between the organization of muscle patterns and that of
joint torques.

While joint torques underlying many different motor behav-
iors have been investigated extensively, a characterization
of their dimensionality with multidimensional decomposition
approaches such as those recently used to analyze muscle pat-
terns is missing. Joint torque generators for a two-joint arm have
been identified before using NMF from simulated data (Chhabra
and Jacobs, 2006) but not from experimental data. Focusing
on reaching movements in vertical planes, as in many previous
studies (Soechting and Lacquaniti, 1981; Lacquaniti et al., 1982;
Flanders et al., 1994, 1996; d’Avella et al., 2006, 2008, 2011), our
aim was to investigate the dimensionality of joint torques and
to compare it with the dimensionality of the muscle patterns.
Moreover, we wanted to explore systematically the dimension-
ality of different types of generators, i.e., generators capturing
shared structure in the spatial–across joints or muscles–, tempo-
ral, and spatiotemporal dimensions. Planar point-to-point reach-
ing movements, for which joint torques can be estimated using a
simplified dynamical model of the arm with two joints, are nor-
mally associated with bell-shaped velocity profiles and biphasic
torque profiles (Morasso, 1981; Soechting and Lacquaniti, 1981).
The shape of such profiles is invariant with respect to move-
ment speed (Soechting and Lacquaniti, 1981) or load (Lacquaniti
et al., 1982) and the relationship between shoulder and elbow
dynamic torques is almost linear (Soechting and Lacquaniti, 1981;
Lacquaniti et al., 1986; Gottlieb et al., 1997). Similar observation
were made for reaching movements in three-dimensional space
(Lacquaniti et al., 1986). These observations indicate that joint
torques for reaching have remarkable regularities suggesting that
their dimensionality is also low. One might hypothesize that there
is a one-to-one relationship between muscle pattern generators
and torque generators. However, biomechanical characteristics
and constraints must be taken into account.

To generate the joint torques τ(t) required to move the arm
along a given joint trajectory q(t), i.e., torques for which the tra-
jectory is a solution of the arm motion equations [see Equation
(3) in Material and Methods], the CNS, according to the modu-
lar control hypothesis, combines a set of Nm (spatial, temporal, or
spatiotemporal) muscle pattern generators:

m(t) =
Nm∑

n = 1

an vn(t)

where vn(t) is the n-th spatiotemporal generator or the product
of the n-th temporal component times the n-th spatial weighting
vector for spatial and temporal generators (see “Dimensionality
of motor commands” in Materials and Methods). The tension
generated by the activation of the each muscle is determined
by the dynamics of the musculotendon unit, which depends

non-linearly on muscle length, velocity, and muscle activation.
Muscle length and velocity depend on joint angles and joint veloc-
ities via a matrix of moment arms. Then, muscle torque depends
on joint angles, joint velocities, and muscle activations

τ = τ(q, q̇, m).

Thus, the required torque profile can be generated by appropri-
ate combination of the muscle pattern generators, i.e., it can be
expressed as a function of the combination coefficients a:

τ = τ(q, q̇,
∑

n

an vn).

The torque does not depend in general linearly on the muscle
activations and, consequently, on the combination coefficients a.
When linearity is an adequate approximation, muscle torque can
be expressed as a linear combination of the “force fields” associ-
ated to each generator, ϕn = ϕn(q, q̇) = τ(q, q̇, en), where en is
the unit vector along the n-th dimension in coefficient space:

τ =
∑

n

an ϕn(q, q̇),

i.e., limb control can be achieved by combination of force-field
primitives (Bizzi et al., 1991; Giszter et al., 1993, 2007; Mussa-
Ivaldi et al., 1994; Kargo and Giszter, 2000a,b; Kargo et al.,
2010; Giszter and Hart, 2013). However, torques profiles observed
across different task conditions can also be expressed as (or
approximated by) a linear combination of Nτ torque generators:

τ(t) =
Nτ∑

n = 1

bn un(t) .

Even if there is a one-to-one relationship between muscle pat-
tern generators and force-field primitives, the number of muscle
pattern generators must be larger than the number of torque
generators because of the non-negativity constraint on muscle
activations. As muscles can only pull, muscle pattern generators
are combined with non-negative combination coefficients and,
even considering a linear muscle-to-torque mapping, to generate
torques spanning a Nτ-dimensional space at least Nτ + 1 non-
negative generators are required (Davis, 1954; Valero-Cuevas,
2009). Moreover, because of the redundancy of the muscular sys-
tem, different muscle patterns can generate the same torques and
thus the muscle pattern dimensionality can be larger than the
minimum imposed by non-negativity, i.e., Nm ≥ Nτ + 1. Thus,
the minimum number of muscle pattern generators depends on
the actual dimensionality of the joint torque required to perform
all conditions of a specific task and the actual number of muscle
pattern generators can be larger than the minimum and must be
determined experimentally. Importantly, we consider here tasks
whose conditions can be described by a set of parameters, such
as, for example, the position of a target of a point-to-point reach-
ing movement. Then, since the skeletal system is also redundant
for the performance of many tasks, e.g., a specific position of the
wrist in space can be achieved with many different joint angle
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configurations, the actual dimensionality of the joint torques may
be lower than the number of joints (i.e., DoF) involved and it
must also be determined experimentally. Finally, while the min-
imal number of muscle pattern generators might guarantee an
optimal solution in terms of computational complexity, it might
be suboptimal in terms of other costs such as muscular effort.
Thus, comparing the torque and muscle pattern dimensionality
can provide new information on the control strategy employed to
perform a specific task.

We analyzed EMGs data recorded from 19 muscles and kine-
matic data collected from markers positioned on the arm of
subjects performing fast reaching movements from one start-
ing position to 8 targets on the sagittal plane and eight targets
on the frontal plane. We used a dynamic model of the arm
with four rotational joints (three at the shoulder and one at the
elbow) and three translational DoF (the position in space of
the shoulder) to estimate joint torques from joint angles with
an inverse dynamics computation (Corke, 1996). We then con-
sidered the dynamic component of the torques, i.e., the total
torques with the gravitational components removed (Gottlieb
et al., 1997), and the phasic component of the muscle activity
waveforms, i.e., the total rectified and filtered EMG waveforms
with the tonic, anti-gravity components removed (Flanders and
Herrmann, 1992; d’Avella et al., 2006). Spatial, temporal, and
spatiotemporal torque generators were identified by performing
PCA on different arrangements of the data matrix. Similarly, spa-
tial, temporal, and spatiotemporal muscle pattern generators were
identified with NMF. We first determined the dimensionality of
generators according either to a threshold on the fraction of data
variation explained (Tresch et al., 1999; Ting and Macpherson,
2005; Torres-Oviedo et al., 2006; Roh et al., 2012) or to the
detection of a “knee” in the curve of the variation explained as
a function of the number of generators (d’Avella et al., 2003;
Cheung et al., 2005; d’Avella et al., 2006; Tresch et al., 2006). We
used the former criterion for the torque data and the latter for
the EMG data. However, to directly compare the dimensionality
of torques and muscle patterns, we then also used a single crite-
rion which took into account the different intrinsic variability of
the two datasets when determining their dimensionality (Cheung
et al., 2009).

MATERIALS AND METHODS
PARTICIPANTS, EXPERIMENTAL APPARATUS, AND TASK
Four right handed subjects (aged between 27 and 40) gave their
written informed consent to participate in the study, which con-
formed with the Declaration of Helsinki and had been approved
by the Ethical Review Board of the Santa Lucia Foundation. The
experimental apparatus and reaching task has been described in
details in a previous report (d’Avella et al., 2006). Briefly, standing
subjects gripped with their right hand an handle (weight 180 g)
which had a sphere (diameter 4 cm) attached to one extremity.
The center of sphere was aligned with the axis of the forearm at
a distance of 12 cm from center of the palm. Participants were
instructed to move the sphere between a central position and 8
targets uniformly arranged on a circle at 15 cm of distance on
either the frontal or sagittal plane while minimizing shoulder
and wrist movements. The central position was adjusted for each

subject so that it required maintaining the upper arm vertical and
aligned to the trunk and the elbow flexed at 90◦. The targets were
indicated by transparent spheres lighted from inside by an LED.
In each trial, after holding the sphere at the start position for at
least 1 s, subjects were instructed to move after a go signal, to
reach the target with a movement of a duration (defined as the
interval in which the speed of the sphere was above 10% of its
maximum) shorter than 400 ms, and to hold there for at least 1 s.
Unsuccessful trials were repeated. Each subject performed each
movement successfully five times in different blocks of trials for a
total of 160 point-to-point movements (2 planes × 8 targets × 2
directions -from the center to the target and from the target back
to the center- × 5 repetitions).

DATA ACQUISITION
The motion of the arm was recorded using an optic motion-
tracking system (Optotrack 3020, Nothern Digital, Waterloo,
Ontario, Canada) with a sampling frequency of 120 Hz and spatial
resolution below 0.1 mm. Active optical markers were positioned
on the shoulder (acromion), the upper arm (at the proximal
end close to the head of the humerus), the elbow (epicondy-
lus lateralis), the wrist (one over the styloid process the radius
and one on the styloid process of the ulna). The motion of the
sphere on the handle (end-point) was recorded with an electro-
magnetic motion-tracking system (Fastrak, Polhemus, Calchester,
VT) with sampling frequency of 120 Hz and spatial resolution
below 4 mm, as estimated by a calibration process performed
within the workspace used in the experiment.

EMG activity was recorded with active bipolar surface elec-
trodes (DE 2.1; Delsys, Boston,MA) from the following mus-
cles: biceps brachii, short head (BicShort), biceps brachii, long
head (BicLong), brachialis (Brac), pronator teres (PronTer), bra-
chioradialis (BrRad), triceps brachii, lateral head (TrLat), tri-
ceps brachii, long head (TrLong), triceps brachii, medial head
(TrMed) deltoid, anterior (DeltA), deltoid, middle (DeltM),
deltoid, posterior (DeltP), pectoralis major, clavicular portion
(PectClav), pectoralis major, lower portion (PectLow), trapez-
ius superior (TrapSup), trapezius middle (TrapMid), trapez-
ius inferior (TrapInf), latissimus dorsi (LatDors), teres major
(TeresMaj), infraspinatus (InfraSp). EMG signal was band-pass
filtered (20–450 Hz) and amplified (total gain 1000, Bagnoli-16,
Delsys Inc.). EMG data were digitized at 1 KHz (PCI-6035E,
National Instruments, Austin, TX).

Data acquisition and experiment control were performed on a
workstation with custom software written in LabView (National
Instruments, Austin, TX). Fastrak data were processed on-line
to compute the movement time and target accuracy and to pro-
vide auditory feedback about unsuccessful trials. The experiment
control program logged the time of all relevant behavioral events.

DATA ANALYSIS
End point kinematics
All analyses were performed with custom software written in
Matlab (Mathworks, Natick, MA). Position and orientation of
the handle and the measured geometric parameters of the han-
dle were used to compute the position of the end-point. The
data were low-pass filtered (FIR filter; 15 Hz cutoff; zero-phase
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distortion; Matlab fir1 and filtfilt functions) and differentiated to
compute tangential velocity and speed. For each movement we
computed the onset time and the end time, defined respectively as
the time in which the speed profile crossed 10% of its maximum
value, and the movement duration (MT), defined as the interval
between the movement onset and the movement end.

Arm model
A kinematic and kinetic model of the arm, incorporating geo-
metrical and inertial parameters of the upper arm and forearm
segments, was used to estimate joint angles and joint torques
from the recorded spatial position of the shoulder, the elbow, and
the wrist markers. The kinematic model was developed using the
Denavit-Hartenberg (D-H) notation (Hartenberg and Denavit,
1955), i.e., as chain of articulated links with four parameters for
each link (a: length, α : twist, d: offset, ϑ : joint angle) describ-
ing the position and orientation of a Cartesian reference frame
fixed on each link with respect to the reference frame fixed on the
preceding link of the chain according to the 4 × 4 homogeneous
transformation matrix T:

T =

⎡
⎢⎢⎣

cos ϑ − sin ϑ cos α sin ϑ sin α a cos ϑ

sin ϑ cos θ cos α − cos θ sin α a sin θ

0 sin α cos α d
0 0 0 1

⎤
⎥⎥⎦ . (1)

The rotation axis of each joint coincides with the z axis of the
preceding link in the chain. The x axis in each frame is directed
as the normal between the z axis of that frame and the z axis of
the next frame. In this way the joint angle is the angle between
the x axes of the frames of the two links connected by the joint.
We modeled four rotational degrees-of-freedom (DOFs) of the
arm—three rotations at the shoulder, i.e., adduction, flexion and
external rotation, and one rotation at the elbow, i.e., elbow flex-
ion (see Figure 1)—and three translational DOFs of the shoulder.
We assumed that shoulder was a spherical joint (i.e., the rota-
tion axes of the three joints intersect at a single point). Lengths
of upper arm, forearm, and hand of each subject were estimated
as a function of the subject’s weight and height according to
regression equations (Winter, 1990). Forearm, hand, and handle
were considered a single link (7th) of length equal to the sum
of the forearm length and the length of the opened hand, thus
approximating the total length of the closed hand and the han-
dle along the direction of the forearm axis with the length of the
opened hand.

The kinetic model of the arm was developed adding to each
link its inertial parameters (mass, center of mass, inertia tensor)
also estimated as a function of the subject’s weight and height
according to regression equations (Zatsiorsky and Seluyanov,
1983). No mass was associated to the first three links required
to represent the spatial position of the shoulder. However, these
translational DOFs were introduced to take into account shoul-
der movements when estimating the joint torques. The mass of
the upper arm was assigned to the 6th link, which had an offset
equal to the length of the upper arm segment. The mass of the
forearm, hand, and handle was assigned to the 7th link, associ-
ated with the elbow flexion. The inertial parameters for this link
were computed from the inertial parameters estimated separately

Elbow
flexion

Shoulder 
adduction

z0

z1

z2z3

Shoulder 
flexion

Shoulder external 
rotation

FIGURE 1 | Joint angle definition for the arm model. The four joint
angles included in the model (shoulder adduction, shoulder flexion,
shoulder external rotation, and elbow flexion) are illustrated by a sequence
of postures in space of a two-link arm. The four rotation axes are indicated
by colored arrows and correspond to the z-axes of the four reference
frames defined according to the D-H notation (see text) and labeled z0–z3.

from the regression equations for the forearm and hand. As the
estimated position of the center of mass of the hand and of the
handle coincided, the mass of the handle (180 g) was summed to
the mass of the hand. The moments of inertia were computed
with respect to its center of mass. The model was implemented in
Matlab using the Robotic Toolbox (Corke, 1996, 2011). The D-H
parameters of the generic arm model are reported in Table 1 and
the specific geometric and inertial parameters estimated for each
subject are reported in Table 2.

Joints kinematics
The arm model was used to estimate at each time sample the
shoulder adduction angle, the shoulder flexion angle, the shoul-
der external rotation angle, the elbow flexion angle using the
positions of the shoulder and elbow markers and the mean posi-
tion between the two wrist markers. For each time sample and
each joint angle, a vector between two markers aligned with the
axis of the limb segment defining the rotation of that joint (i.e.,
shoulder and elbow markers for shoulder adduction and shoulder
flexion, elbow and wrist markers for shoulder external rotation
and elbow flexion) was computed first. Then, the segment vector
was transformed into the reference frame associated to the joint
according to the matrices defined by Equation (1) and the angle
computed as

ϑi = tan−1(y/x) (2)

where x and y are the coordinate of the vector in the reference
frame associated with the joint rotation axis (z axis). To compen-
sate for potential misalignment between the tracker z axis and the
vertical axis, the coordinates of the markers were first rotated into
a Cartesian reference frame with the gravitational acceleration
along the z axis. The direction of the gravitational acceleration
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Table 1 | D-H parameters for the 7 DOFs arm model.

Link DOF αi ai θi di Type Offset

1 Sh X π/2 0 π/2 0 P 0

2 Sh Y π/2 0 π/2 0 P 0

3 Sh Z π/2 0 π/2 0 P 0

4 Sh adduction π/2 0 0 0 R −π/2

5 Sh flexion π/2 0 0 0 R π/2

6 Sh external rotation π/2 0 0 LU R π

7 El flexion 0 LF 0 0 R π/2

Sh, shoulder; El, elbow; LF , forearm link length; LU, upper arm link length; P is

for prismatic joints and R is for revolute joints.

Table 2 | Arm model parameters for individual subjects.

Subject 1 2 3 4

Height (cm) 180 162 177 181

Weight (Kg) 84 58 75 78

LU (cm) 33.48 30.13 32.92 33.67

LF (cm) 45.36 40.82 44.60 45.61

rU (cm) 13.91 12.16 13.48 13.78

rF (cm) 26.38 23.57 25.83 26.39

MU (kg) 2.29 1.56 2.03 2.11

MF (kg) 2.00 1.52 1.84 1.90

I(lo) U (kg cm2 s−2) 46.54 28.54 40.45 42.61

I(ap) U (kg cm2 s−2) 137.84 74.02 120.09 130.03

I(tr) U (kg cm2 s−2) 152.50 84.74 133.92 144.65

I(lo) F (kg cm2 s−2) 21.91 12.93 18.63 19.56

I(ap) F (kg cm2 s−2) 465.00 295.87 416.54 445.74

I(tr) F (kg cm2 s−2) 475.79 302.27 425.77 455.45

LU, upper arm length; LF , forearm length (including hand and handle); rU, posi-

tion of the upper arm center-of-mass along the link-6 x axis; rF, position of the

upper arm center-of-mass along the link-7 x axis; I(lo) U, inertia along the longi-

tudinal axis of the upper arm; I(ap) U, inertia along the antero-posterior axis of

the upper arm; I(tr) U, inertia along the trasversal axis of the upper arm; I(lo) F,

inertia along the longitudinal axis of the forearm + hand + handle system; I(ap)

F, inertia along the antero-posterior axis of the forearm + hand + handle system;

I(tr) F, inertia along the trasversal axis of the forearm + hand + handle system.

was estimated by means of a calibration of based on tracking two
markers attached to the fulcrum and the extremity of a pendulum.

Angular velocity and acceleration were computed by numeri-
cal differentiation. To validate the kinematic model, forward kine-
matics was used to compare estimated and measured end-point
trajectories.

Inverse dynamics
Joint angles, joint velocities and joint accelerations were used to
estimate the torque profiles via recursive Newton-Euler calcula-
tion (rne function of Matlab Robotics Toolbox). We computed
the total torques τ

τ = M(q)q̈ + C(q, q̇)q̇ + G(q) (3)

where M is the manipulator inertia matrix, C is the Coriolis and
centripetal torque, and G is the gravitational torques. To estimate

non-gravitational (dynamic) torques we subtracted gravitational
torques from the total torques.

To validate the inverse dynamics calculation we also performed
a forward dynamics simulation (fdyn function of Matlab Robotics
Toolbox) using the arm model and the estimated torque profiles
to reproduce the original joint angle trajectories.

Data preprocessing
The EMGs for each trial were digitally full-wave rectified, low-
pass filtered (FIR filter, 20 Hz cut-off, zero-phase distortion,
Matlab fir1, and filtfilt functions), and integrated over 10 ms inter-
vals. In a few cases muscle waveforms showed some artifacts,
possibly due to a partial detachment of the electrode from the
skin, or to an high correlation between two or more muscles,
and those muscles were removed from further analysis (subject
1: PectLow; subject 2: TrapInf, PectLow).

EMGs and torques for all the trials in each experimental con-
dition (2 planes × 8 targets × 2 directions) were aligned on the
time of movement onset and averaged.

Finally, both torques and muscle waveforms were normalized
in time to equal MT and resampled with 50 samples per MT.
Samples from 0.5 MT before movement onset to 0.5 MT after
movement end (total 100 samples) were considered for further
analysis.

Dimensionality of motor commands
We consider a set of D command signals (joint torques or mus-
cle patterns) delivered by a controller in a given time interval
(sampled T times) to accomplish a task in one of K distinct task
conditions (e.g., different reaching targets). We hypothesize that
a modular controller generates these command signals by modu-
lating and combining a small set of generators whose structure is
invariant across all task conditions. The structure of such genera-
tors may be defined in the spatial (across signals, i.e., muscles or
joints), temporal, and spatiotemporal domains. The dimensional-
ity of the ensemble of command signals is then simply the number
of generators necessary to accomplish all K tasks conditions.

Spatial dimensionality is the number of generators necessary
to capture time-invariant relationships between the signals. For
N generators:

xk(t) =
N∑

n = 1

ck
n(t) wn (4)

where xk(t) are the set of signals for condition k, i.e., a vector-
valued (D-dimensional) function time (or a D × T matrix for
discrete time samples), ck

n(t) is a condition-dependent, time-
varying combination coefficient for the n-th generator, wn is the
condition-independent, time-invariant n-th spatial generator, i.e.,
a D-dimensional vector capturing the relative activation weight of
different signals.

Temporal dimensionality is the number of generators necessary
to capture temporal components shared across all signals (i.e.,
space-invariant). For N generators:

xk(t) =
N∑

n = 1

cn(t) wk
n (5)
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where xk(t) are again the set of signals for condition k, cn(t) is
the condition-independent, time-varying n-th generator (or tem-
poral component), wk

n is the condition-dependent, time-invariant
n-th D-dimensional weight vector for the n-th component. Notice
how the critical difference in the definition of spatial and tem-
poral generators and dimensionality is in the dependence on the
task condition (k). Indeed, generators are useful concepts only
if they can be used for a variety of conditions thus allowing an
effective reduction of the number of parameters to select for each
condition.

Spatiotemporal dimensionality is the number of generators cap-
turing simultaneously invariant spatial and temporal features in
the signals. Thus, each generator includes a set of signal com-
ponents that can be expressed as a time-varying vector. For N
generators

xk(t) =
N∑

n = 1

ak
nvn(t) (6)

where ak is a condition-dependent combination coefficient for the
n-th generator, vn(t) is the n-th spatiotemporal generator, i.e., a
condition-independent, time-varying D-dimensional vector (or a
D × T matrix for discrete time samples). However, as different
signals may be related synchronously or asynchronously, we can
distinguish the case of synchronous spatiotemporal generators:

vn(t) = cn(t)wn (7)

in which each generator vn(t) can be expressed as the product
of a scalar function of time cn(t)times a time-invariant weight
vector wn. In contrast, asynchronous spatiotemporal generators
cannot in general be factorized into separate spatial and temporal
generators.

In addition to being scaled in amplitude, spatiotemporal
generators may also be recruited at different times across task
conditions, i.e., they may also show invariance for time shifts
(d’Avella et al., 2003, 2006). If we assume that the duration of
each spatiotemporal generator is smaller than the duration of the
signals, we can incorporate condition-dependent onset times tk

n
into Equation (6):

xk(t) =
N∑

n = 1

ak
n vn(t − tk

n) (8)

Identification of generators and their dimensionality
To investigate the spatial, temporal, and spatiotemporal dimen-
sionality of joint torques and muscle patterns we used multi-
dimensional decomposition techniques to identify the different
types of generators. We considered the dynamic component of
the torques and the phasic component of the muscle activity
waveforms. We then used PCA to identify torque generators and,
because of the inherent non-negativity of muscle activity, we
used NMF to identify muscle pattern generators. Finally, as dis-
cussed below, we selected the number of generators with three
different criteria, two specific for each dataset and one for both
datasets.

Dynamic torques and phasic muscle patterns. Reaching move-
ments in vertical planes require torques and muscle activities to
accelerate and decelerate the limb and to balance gravitational
forces. In this work we focused on the former components, i.e.,
dynamic torques and phasic muscle patterns. Dynamic torques
were computed as the total torques with the gravitational com-
ponents [the last term of the right hand side of Equation (3)]
removed (Gottlieb et al., 1997). Flanders and collaborators
(Flanders and Herrmann, 1992) found that it is possible to dis-
tinguish the phasic component (related to the movement) from
the tonic one (related to maintain a specific posture of the arm)
of an EMG signal. As in d’Avella et al. (2006) we used a subtrac-
tion procedure to remove the tonic component, i.e., we subtracted
a constant muscle activation level before and after the movement
and a linear ramp between the two constant values during the
movement. After the subtraction a small fraction of EMG samples
assumed negative values, indicating that the phasic EMG activ-
ity was lower than the tonic activity. However, in order to use
the NMF algorithm, we set to zero all negative values (ratio of
negative area over total area of all muscles, 0.15 ± 0.04, mean
±SD over subjects). To assess the effect of this procedure on
the number of generators and on their structure, we also identi-
fied generators from the original phasic muscle patterns without
imposing a non-negativity constraint and using an iterative fac-
torization algorithm based on gradient descent in place of NMF
(see below).

Data matrices. To identify spatial, temporal, and spatiotemporal
generators, joint torque and muscle patterns data, after pre-
processing, were organized into three different data matrices that
were factorized by either PCA (torques) or NMF (muscle pat-
terns). For each subjects we identified generators from K task
conditions (K = 32, except for subject 3 for which we had to
exclude 2 conditions on the frontal plane and 2 on the sagit-
tal plane because of missing data from the arm markers used
to compute joint angles). To identify spatial generators, the data
for each condition (D signals, EMG or torque, times T sam-
ples, with T = 100 after time normalization and resampling, see
Figure 2) were arranged into a data matrix X with D row and
T × K columns which was factorized, according to Equation (4)
in matrix notation, as X = W C, where W is the condition-
independent synergy matrix with D rows and N columns, N
number of generators, and C is the matrix of condition- and
time-dependent combination coefficients with N rows and T × K
columns. For temporal generators, in contrast, the data matrix
was constructed by arranging the waveforms from all signals in
all conditions as columns, i.e., X had T rows and D × K columns,
and it was factorized, according to Equation 5 in matrix notation,
as X = C W, with C is the condition-independent matrix of tem-
poral components, with T rows and N columns, and W is the
condition- and signal-dependent matrix of weights, with N rows
and D × K columns. Finally, for spatiotemporal generators, the
data samples for all signals of each conditions were arranged in a
column and the data matrix X, with D × T rows and K columns,
was factorized, according to Equation 6 in matrix form, as X = V
A, with V condition-independent matrix of time-varying syner-
gies with D × T rows and N columns and A condition-dependent
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FIGURE 2 | Types of multidimensional decomposition of data from

different task conditions. Data collected from D channels (4 in this
schematic illustration, represented by different patterns) over T time samples
(6, represented by different color saturations) in a single task condition are
represented by a grid of squares. Different task conditions are represented
with different background colors. A spatial decomposition is obtained by
factorizing the data matrix obtained by stacking the data from individual
conditions horizontally (i.e., matching their spatial—channels—dimension)
into a matrix of N (3) spatial generators (D rows and N columns) times a

matrix of time-and condition-dependent coefficients. A temporal
decomposition is obtained by factorizing the transpose of data matrix
obtained by stacking the data from individual conditions vertically (i.e.,
matching their temporal dimension) into a matrix of N (3) temporal generators
(T rows and N columns) times a matrix of channel- and condition-dependent
coefficients. Finally, a spatiotemporal decomposition is obtained by arranging
all the data samples of each condition into a column and factorizing the
resulting matrix into a matrix of N (3) spatiotemporal generators (D × T rows
and N columns) times a matrix of condition-dependent coefficients.

matrix of combination coefficients with N rows and K columns.
For joint torque generators, the covariance of the data matrix
was computed and, for each N, the first N principal components
(extracted using MATLAB pcacov function) were considered. For
muscle pattern generators, for each N, C and W matrices were
initialized randomly and the best solution out of 20 runs of the
NMF algorithm was selected. Each run of the iterative algorithm
was terminated when the reconstruction R2 increased in one iter-
ation by less than 10−4 for five consecutive iterations. To assess
the effect of clipping to zero the negative values of the phasic mus-
cle patterns, we also identified generators without non-negativity
constraints using an iterative gradient descent algorithm. We
minimized the data reconstruction error by combination of spa-
tial, temporal, and spatiotemporal generators iterating a step in

which combination coefficients (C and A), in the spatial and
spatiotemporal cases, and weights (W), in the temporal case, were
updated and a step in which synergies (W and V), in the spa-
tial and spatiotemporal cases, and temporal components (C), in
the temporal case, were updated. Both updates were performed
along the direction opposite to the error gradient with step size of
0.05 for the combination coefficients (spatial and spatiotempo-
ral cases), 0.0018 for the weights (temporal case), 0.0005 for the
synergies (spatial and spatiotemporal cases), 0.0019 for the tem-
poral components. These gradient step sizes were selected within
a range of values in order to achieve the highest reconstruction R2.
As in d’Avella et al. (2006), in the spatial and spatiotemporal
cases, we added a term to the error function to penalize large
negative values in the identified synergies. The same number of
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runs and termination conditions as for the NMF algorithm were
used.

Selection of the number of generators. For torque generators, we
selected their number as the minimum number which explained
at least 90% of the data variation (VAF or R2, defined as
1—SSE/SST, with SSE sum of square residuals of the data recon-
struction by the generators, and SST sum of the squared residuals
of the data with respect to the mean over the rows of the data
matrix). Such criterion (“R2 threshold”) has been frequently
used in the muscle synergy literature (Tresch et al., 1999; Ting
and Macpherson, 2005; Torres-Oviedo et al., 2006; Roh et al.,
2012), even if sometimes with a different definition (i.e., with SST
defined as the sum of the squared data, see Delis et al., 2013). Such
criterion is based on the assumption that the fraction of data vari-
ation unexplained is due to noise and the threshold is supposed
to separate structured variation due to the combination of gen-
erators and noise. However, if an independent estimation of the
noise level is not available the choice of such threshold is necessar-
ily ad-hoc. An alternative approach, also used in previous studies
(d’Avella et al., 2003; Cheung et al., 2005; Tresch et al., 2006), that
we used for selecting the number of muscle pattern generators is
the detection of a “knee” in the curve of R2 as a function of the
number of generators. Such criterion (“R2 knee”) relies on the
assumption that the noise is isotropic, i.e., contributes equally to
all dimensions, and does not depend on a specific assumption of
the relative level of noise. To detect a change in slope in the R2

curve, for each N, we performed a linear fit of the portion of the
curve from N to the end (i.e., D) and we selected N for which
the mean square error of the fit was < 10−4, indicating that the
“tail” of the curve after the “knee” was essentially straight. We
could not use this second criterion for the torques as their max-
imum spatial dimension (4) was too low and it was impossible
to identify a “knee” with such procedure. However, to compare
torque and muscle pattern with the same criterion, we also deter-
mined their dimensionality with a criterion (“R2 shuffle”) that
took into account the different intrinsic noise levels of the two
datasets. We then used a threshold on the slope of the R2 curve
according to slope of the curve obtained after a random shuffling
the rows of the data matrix (Cheung et al., 2009). Data samples
after shuffling were low-pass filtered to match the smoothness
in the original data. By shuffling the data the multidimensional
structure of the original data was lost but each dimension main-
tained the original variability. Thus, we selected the number of
generators as the point on the original R2 curve at which any fur-
ther increase in the number of extracted generators yielded an
R2 increase smaller than 75% of that for the generators extracted
from the shuffled data (mean over 50 extractions from reshuffled
data).

Comparison of generators across subjects. To compare generators
across subjects, we tested how well a set of generators iden-
tified in one subject could reconstruct the data of a different
subject. We then computed a R2-value to assess the similarity
of the subspaces spanned by the generators of different sub-
jects. To assess the significance of these R2-values we performed
a Monte Carlo simulation identifying generators from random

data obtained by randomly shuffling the original data (50 runs
for each subject and type of generator). We then computed the
95% percentile of the distribution of R2-values for the reconstruc-
tion of the original data with generators identified from random
data.

Effect of potential contamination of EMG recordings by
cross-talk. As surface EMG recordings can be affected by cross-
talk due to volume conduction of the EMG signal from neighbor-
ing muscles, we performed a Monte Carlo simulation to assess
the effect of such potential contamination on the dimensionality
of the spatial muscle pattern generators. For each muscle, i.e., the
i-th row of the normalized data matrix X, we simulated a cross-
talk contamination from a second muscle (j-th row), randomly
chosen from all other muscles and not limited to the neighboring
ones, according to a cross-talk weight (α) randomly drawn from
an exponential distribution with mean 0.1, i.e., X′

ik = Xik + α

Xjk. We then identified the generators from the contaminated
data matrix X′ with NMF and we estimated their dimensional-
ity. For each subject, we performed a total of 100 simulation runs,
and, across all subjects, we found that the dimensionality esti-
mated using the contaminated data matrix was different from the
dimensionality estimated using the original matrix only in 6.7%
of runs (0 runs for subjects 1, 2, 4; 27 runs for subject 3, mean
dimensionality difference 0.27). Thus, while we cannot exclude
that our EMG recordings were not affected by cross-talk, we are
confident that such potential contamination did not significantly
alter muscle pattern dimensionality estimation.

RESULTS
DYNAMIC TORQUES
Joint torques were estimated by inverse dynamics from joint angle
trajectories using a kinetic model of the arm parametrized by the
height and weight of each subject. To validate the arm model and
the results of the inverse dynamics computation we performed a
forward dynamic simulation. The joint angle trajectories simu-
lated using the torques estimated by inverse dynamics matched
well the original joint angle trajectories of all subjects and con-
ditions (R2 = 0.99 ± 0.02, mean across subjects ±SD). Figure 3
shows an example of end point trajectories, end point speed pro-
files, joint angle trajectories, angular velocities, and gravitational
and dynamic joint torque profiles for eight center-out movements
on the frontal plane. As expected, end point trajectories were
straight and velocity profiles bell-shaped. Joint angle trajecto-
ries and the corresponding angular velocities were modulated by
movement direction. Dynamic torques, i.e., total torque with the
gravitational torques removed, were bi-phasic, as observed before
(Gottlieb et al., 1997). The time courses of the joint angle tra-
jectories and angular velocities were different across joints and
conditions but, because of the dynamic interaction between the
different DOFs and they were generated by a synchronous bipha-
sic pulse of torque distributed across joints with different bal-
ances depending on the movement direction. Such coordination
patterns in the dynamic torque profiles is clearly visible in a scat-
ter plot of a pair of joint torques. Figure 4 shows the six scatter
plots of all pairs of joint torque profiles, during an interval of
250 ms around movement onset, approximately capturing the
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FIGURE 3 | Example of endpoint speed, velocity, joint angles and

torques. Example of endpoint trajectories, end-point speed profiles, joint
angles, joint angular velocities, gravitational (light gray ) and dynamic (dark
gray ) torques for eight center-out movements in the frontal plane of

subject 1 (mean across repetitions of each movement). Vertical dashed
lines represent the times of movement onset and movement end.
Shaded areas around gravitational and dynamic torque profiles
represent ±1 SD around the mean.
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FIGURE 4 | Example of coordination between pairs of dynamic torques. Each scatter plot illustrated the dynamic torques for a pair of joints recorded in an
interval of 250 ms around the time of movement onset for 8 center-out movements in the frontal plane of subject 1.

first phase of the profile, for the same 8 movements of Figure 3. If
a pairs of torques were modulated synchronously, the correspond-
ing trajectory in the scatter plot would appear as a straight line
segment with a direction depending on the relative amplitude.
Indeed, for most pairs and movement directions dynamic torques
appeared to be modulated close to synchronously, especially in
the initial (raising) portion of the profile. Finally, for two pairs of
dynamic torques, shoulder external rotation-shoulder adduction
and elbow flexion-shoulder flexion, the direction of the line seg-
ment in the scatter plot depended only weakly on the movement
direction, suggesting that the dynamic torques were spanning
a subspace of the four dimensional torque space orthogonal to
those two directions. We then generalized these observations
by identifying dynamic torque generators and estimating their
dimensionality.

Spatial dimensionality
We first assessed the spatial dimensionality of the dynamic
torques by identifying spatial generators, i.e., vectors in the
torque space capturing specific balances of torque magnitude
which could reconstruct the data once multiplied by time- and
condition-dependent coefficients (see Materials and Methods and
Figure 2), using PCA. For each subject, the number of genera-
tors was selected as the minimum number for which the fraction
of data variation explained exceeded 0.9 (“R2 threshold” cri-
terion) and as the number of generators for which adding an
additional generator increased the R2-value less than 75% of the
mean R2-values obtained identifying generators from shuffled
data (“R2 shuffle” criterion). The mean dimensionality across
subjects was 2.25 according to the R2threshold criterion and 2.75
according to the R2 shuffle criterion (see Table 3 for individual

values). The maximum potential spatial dimensionality of the
torques was 4, corresponding to the number of joints, i.e., the
number of rows of the data matrix used for spatial decomposition
(Figure 2).

Figure 5A shows the R2-value as a function of the number of
generators for subject 1 and Figure 5B the three spatial generators
of the same subject selected according to the R2 shuffle criterion.
The first generator (w1) is dominated by shoulder flexion torque.
The second generator (w2) combines a large shoulder adduction
torque with a smaller shoulder internal rotation (i.e., negative
external rotation) and elbow extension (i.e., negative elbow flex-
ion). Finally, the third generator (w3) represents a large elbow
flexion torque and a smaller shoulder adduction torque. Notably,
none of the generators or their combinations can generate coordi-
nated shoulder adduction and shoulder external rotation torques,
i.e., the direction orthogonal to the torques direction observed
in the corresponding scatter plot of Figure 4. Thus, the structure
of the spatial generators indicated that such torque coordination
pattern was never used to perform reaching movements in the
frontal and sagittal planes.

Figure 5C illustrates an example of the reconstruction of the
dynamic torque profiles of subject 1 in six different conditions by
the combination of the three spatial generators of Figure 5B. The
dynamic torques for the first two conditions, medial and lateral
movements in the frontal plane, are generated by a comparable
level of activation of all three generators with a bi-phasic acti-
vation of shoulder adduction and internal rotation followed by
shoulder abduction and external rotation for the medial move-
ment and the opposite order for the lateral movement captured
mainly by the activation of the second generation with similar bi-
phasic profiles but opposite signs of its combination coefficient
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Table 3 | Comparison of different types of dimensionality of dynamic torques and phasic muscle patterns estimated according to three criteria

for the selection of the number of generators.

Subject Criterion Torques Muscle patterns

Spatial Temporal Spatiotemporal Spatial Temporal Spatiotemporal

S 1 R2 threshold 2 1 3 – – –

R2 knee – – – 4 5 5

R2 shuffle 3 1 3 4 4 7

S 2 R2 threshold 3 1 3 – – –

R2 knee – – – 5 5 6

R2 shuffle 3 1 3 5 4 7

S 3 R2 threshold 2 1 3 – – –

R2 knee – – – 6 4 6

R2 shuffle 3 1 3 6 3 7

S 4 R2 threshold 2 1 2 – – –

R2 knee – – – 5 4 5

R2 shuffle 2 1 2 5 4 8

(c2). The last two conditions, backward and forward movements
in the sagittal plane, require large shoulder flexion/extension
torques that are generated by a bi-phasic activation of the first
generator, captured by the first time-varying coefficient (c1).

To assess the similarity between the subspaces spanned by the
generators identified in each subject we reconstructed all dynamic
torques of each subject with the generators of all subjects. Table 4
shows the R2-values obtained using the number of generators
determined according to the R2 shuffle criterion (see Table 3).
The R2-values for the reconstruction of the data of each subject
by the generators extracted from the other subjects (0.96 ± 0.04,
mean ±SD, n = 12) were close to the R2-values of the reconstruc-
tion of the data of each subject by the generators extracted from
the same data (0.98 ± 0.02, n = 4) and were significantly higher
than the R2-values obtained with generators identified from ran-
domly shuffled data, indicating that the dynamic torques of the
different subjects shared a similar spatial organization.

Temporal dimensionality
To identify generators of the temporal organization of dynamic
torques we performed PCA on the collection of the torque profiles
of all joints and conditions. The resulting temporal compo-
nents were then waveforms with the same duration as the torque
profiles and each profile was reconstructed by multiplying the
component matrix by a weight specific for that joint and con-
dition. The dimensionality was 1 for all subjects and for both
criteria (see Table 3). In contrast, the maximum potential tem-
poral dimensionality of the torques was 100, corresponding to the
number of time samples after time-normalization and resampling
from −0.5 MT before movement onset and 0.5 MT after move-
ment end, i.e., the number of rows of the data matrix used for
temporal decomposition (Figure 2).

Figure 6A illustrates the R2 curve for the temporal decompo-
sition up to 12 generators for subject 1 and Figure 6B the single
temporal component identified in this subject and representa-
tive of all subjects, clearly showing a bi-phasic profile. Figure 6C

illustrates the reconstruction of the joint torques for the same six
conditions of Figure 5C by the temporal generator. The torque
profiles for each condition are reconstructed multiplying the sin-
gle temporal component (c1) by a single condition-dependent
weight vector (w1). With respect to the reconstruction with spa-
tial generators, the weight vector, which has the same dimensions
of a spatial generator, is now modulated by the movement. For
example the opposite signs in the bi-phasic profiles of shoulder
adduction and external rotation for medial and lateral move-
ments and for shoulder flexion for backward and forward move-
ments are obtained by opposite signs of the components of the
weight vector.

Finally, the temporal generators were also similar across all
subjects. As for spatial generators, the reconstruction of the data
of each subject by the generators of all other subjects had R2-
values (0.93 ± 0.01, mean ±SD) which were comparable with
the R2-values for the reconstruction of the data of each subject
by the generator extracted from the same data (0.94 ± 0.01) and
significantly higher than the R2-values obtained with generators
identified from randomly shuffled data.

Spatiotemporal dimensionality
Spatiotemporal generators, which can be viewed as either time-
varying vectors capturing a different spatial coordination among
torques at each time or as collections of different waveforms for
each torque, were identified by PCA on a data matrix obtained
arranging all time samples from all joints in a single column
for each movement condition. Thus, torque samples from dif-
ferent joints and times represented different dimensions and
the possibility of generating the data with a number of gen-
erators smaller than the maximum potential dimension (400,
corresponding to the number of joints times the number of
samples) revealed a coordination in the activation of different
joints at different times. Once a set of spatiotemporal gener-
ators are identified, the data are reconstructed by multiplying
each generator by a single condition-dependent coefficient (see
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FIGURE 5 | Spatial decomposition of dynamic torques. (A) R2 curve for
subject 1 obtained by spatial decomposition using PCA. (B) Three spatial
generators selected for subject 1. (C) Example of the reconstructions of the
dynamic torques for six movement conditions of subject 1 obtained with
the generators illustrated in panel (B) (shaded area: original data, thick line:
reconstructed data, bottom: time-varying combination coefficients).

Table 4 | R2 for the reconstruction of the data of each subject with the

torque generators identified in all subjects.

Generators/data S 1 S 2 S 3 S 4

Spatial S 1 0.99 0.99 0.98 0.99

S 2 0.99 0.99 0.97 0.99

S 3 0.99 0.98 0.99 0.99

S 4 0.92 0.90 0.88 0.95

Temporal S 1 0.95 0.92 0.92 0.93

S 2 0.94 0.93 0.94 0.93

S 3 0.91 0.92 0.94 0.92

S 4 0.94 0.92 0.93 0.93

Spatiotemporal S 1 0.97 0.92 0.90 0.94

S 2 0.94 0.95 0.92 0.93

S 3 0.90 0.89 0.96 0.92

S 4 0.88 0.84 0.82 0.91

Figure 2). Thus the spatiotemporal decomposition provides a
potentially very compact representation of the structure inher-
ent in the data. The mean spatiotemporal dimensionality across
subjects was 2.75 according to both criteria (see Table 3 for
individual values). Notably, mean spatial and spatiotemporal
dimensionalities were very close and even equal for each sub-
ject when considering the R2 shuffle criterion. Moreover, as the
temporal dimensionality was 1, the spatiotemporal dimension-
ality was essentially the product of the spatial and the temporal
dimensionalities.

pt Figure 7A illustrates the R2 curve for the spatiotempo-
ral decomposition up to 12 generators and Figure 7B the three
spatiotemporal component for subject 1. Comparing the struc-
ture of these generators with that of the spatial (Figure 5B) and
temporal (Figure 6B) generators of the same subject, it is appar-
ent how each spatiotemporal generator appears as the product
of a spatial generator by a temporal one. Indeed, the activation
waveforms of all spatiotemporal generators are approximately
synchronous and similar to the waveform of the single tem-
poral generator. Figure 7C illustrates the reconstruction of the
joint torques for the same six conditions of Figures 5C, 6C. The
torque profiles for each condition are reconstructed multiplying
each spatiotemporal component by a single condition-dependent
coefficient (ci), represented by the height of the rectangle below
the torque profiles. With respect to the reconstruction with
spatial and temporal generators, movements requiring torque
profiles with opposite signs are generated simply by chang-
ing the sign in a single combination coefficient, e.g., c2 for
medial and lateral movements and c1 for backward and forward
movements.

As in previous cases, spatiotemporal generators were similar
across subjects. The R2-values for the reconstruction of the data
of each subject by the generators of all other subjects (0.90 ± 0.04,
mean ±SD) were close to the R2-values for the reconstruction of
the data of each subject by the generator extracted from the same
data (0.95 ± 0.02) and significantly higher than the R2-values
obtained with generators identified from randomly shuffled
data.
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Potential misestimation of subject mass and height
The estimation of the joint torques from the recorded joint
kinematics through the inverse dynamic calculation depends on
geometric and inertial parameters which are estimated as a func-
tion of the subject mass and height according to anthropometric
tables (see Arm Model section in Materials and Methods). We
assessed the effect of a potential misestimation of such parame-
ters on the estimated torque dimensionality by identifying joint
torque generators after varying the mass and the height of each
subject by ±5, ±10, ±15, ±20%. We recomputed joint torques
for individual trials of all subjects and re-processed the torque
data as with the original parameters. Across all subjects and types
of generators, the dimensionality was affected by a change in mass
in 8 out of 96 cases (4 subjects × 3 types of generators × 8 mass
change levels) and by a change in height in nine cases. Thus, the
estimation of torque dimensionality is robust to small errors in
the estimation of anthropometric parameters.

MUSCLE PATTERNS
Phasic muscle patterns, obtained by subtracting the anti-gravity
(tonic) components from the rectified, filtered, averaged, time-
normalized, and resampled EMG waveforms, were decomposed
with NMF to assess their dimensionality. Phasic muscle pat-
terns for fast reaching movements in vertical planes have been
described before (d’Avella et al., 2006). In contrast to our previous
study, here we identified spatial generators, temporal genera-
tors, and spatiotemporal generators without onset delays and we
compared their dimensionality with the dimensionality of the
corresponding generators of dynamic torques.

Spatial dimensionality
The mean spatial dimensionality of the phasic muscle patterns
across subjects was five according to the position of change in
slope of the R2 curve as a function of the number of generators
(R2 knee criterion) and five according to the R2 shuffle crite-
rion (see Table 3 for individual values). Thus, as expected, the
dimensionality of the muscle pattern generator was larger than
the number of spatial torque generators (2.75 according R2 shuffle
criterion) as muscle pattern generators could only be combined
with non-negative time- and condition-dependent combination
coefficients. However, the number of muscle pattern generators
was larger than the minimum required for generating a space of
the same number of linear dimensions as the torque generators
(2.75) by non-negative combinations (3.75 = 2.75 + 1).

Figure 8A shows the R2 curve for the spatial decomposition of
the phasic muscle patterns of subject 1, in which a knee at four
generators is clearly visible. The lower R2-value at the selected
number of muscle patterns generators (0.80) with respect to the
corresponding value for the torque generators (0.99) indicated
that a much larger fraction of the muscle data variation was due
to noise. The four spatial generators (or time-invariant muscle
synergies) for the same subject illustrated in Figure 8B (w1–w4)
show specific groupings of muscles spanning multiple joints and
with the same muscle recruited by multiple generators. Finally, in
Figure 8C the examples of the reconstruction of the phasic muscle
patterns for six movement conditions by the combination of the
spatial generators are presented. The temporal structure of muscle
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FIGURE 8 | Spatial decomposition of phasic muscle patterns. (A) R2

curve for subject 1 obtained by spatial decomposition using NMF. (B) Four
spatial generators selected for subject 1. (C) Example of the reconstructions
of the muscle patterns for six movement conditions of subject 1 obtained
with the generators illustrated in panel (B) (shaded area: original data, thick
line: reconstructed data, bottom: time-varying combination coefficients).
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Table 5 | R2 for the reconstruction of the data of each subject with the

muscle pattern generators identified in all subjects.

Generators/data S 1 S 2 S 3 S 4

Spatial S 1 0.80 0.60 0.54 0.62

S 2 0.64 0.74 0.61 0.70

S 3 0.67 0.71 0.80 0.69

S 4 0.73 0.75 0.60 0.85

Temporal S 1 0.88 0.83 0.88 0.83

S 2 0.85 0.86 0.88 0.85

S 3 0.81 0.79 0.86 0.79

S 4 0.77 0.78 0.83 0.81

Spatiotemporal S 1 0.84 0.30 0.27 0.32

S 2 0.37 0.77 0.41 0.51

S 3 0.25 0.41 0.79 0.36

S 4 0.38 0.49 0.39 0.80

patterns and of combination coefficients is clearly more complex
than that of the spatial generators with the tri-phasic organization
of the muscle patterns generated by both the temporal structure of
the combination coefficients and by the superposition of different
generators.

Finally the spatial generators for the muscle patterns were less
similar across subjects than the spatial generators for the torques
(see Table 5). The reconstruction of the data of each subject by
the generators of all other subjects had a R2-values (0.66 ± 0.06,
mean ±SD) much lower than the mean R2 for the reconstruc-
tion by the generators extracted from the same data (0.80 ± 0.04)
but still significantly higher than the R2-values obtained with
generators identified from randomly shuffled data.

Temporal dimensionality
The mean number of temporal generators of the phasic mus-
cle patterns was 4.5 according to the R2 knee criterion and 3.75
according to the R2 shuffle criterion (see Table 3 for individual
values). As for the spatial generators, the temporal dimension-
ality of the muscle pattern generators was larger than the mini-
mum number required to generate a space with the same linear
dimensions as the number of temporal torque generators (1) by
non-negative combinations (2 = 1 + 1).

Figure 9A shows the R2 curve for the temporal decomposi-
tion of the phasic muscle patterns of subject 1 and Figure 9B the
four temporal generators (or components) selected in that sub-
ject according to both criteria. The first three generators capture a
single burst of muscle activity and the fourth component a small
burst followed by a larger burst. The four components peak at dif-
ferent times and thus they appear to capture four distinct phases
of the muscle patterns observed in different directions. However,
the examples of muscle pattern reconstructions and combina-
tion weights for six movement directions (Figure 9C) show that
in many cases the weight vectors loading the different compo-
nents were similar within each movement condition (e.g., for the
first two components of the medial movement and the last two
components of downward movement), suggesting that such tem-
poral decomposition was necessary to capture not only the major

changes in the muscle patterns over the duration of the movement
but also small asynchronous adjustments.

In contrast to the spatial generators but similarly to the tem-
poral generators for torques, muscle pattern temporal generators
were similar across all subjects. The R2-values for the recon-
struction of the data of each subject by generators of all other
subjects (0.82 ± 0.04, mean ±SD) were close to the values for
the reconstruction by the generators extracted from the same
data (0.85 ± 0.03) and higher than the R2-values obtained with
generators identified from randomly shuffled data.

Spatiotemporal dimensionality
The mean number of spatiotemporal generators of the pha-
sic muscle patterns was 5.5 according to the R2 knee cri-
terion and 7.25 according to the R2 shuffle criterion (see
Table 3 for individual values). Both dimensionality estimates
were larger than the minimum number of generators required
for generating a space with the same linear dimensions as the
number of torque spatiotemporal generators (2.75) by non-
negative combinations (3.75 = 2.75 + 1). Moreover, differently
from torques, the product of the spatial and temporal muscle
pattern dimensionalities (22.5 according to the R2 knee crite-
rion and 18.7 according to the R2 shuffle criterion) was much
higher than the spatiotemporal dimensionality. Thus the spa-
tiotemporal generators captured asynchronous muscle coordi-
nation patterns that were not simply the result of the syn-
chronous combination of all possible spatial and temporal
generators.

Figure 10A shows the R2 curve for the spatiotemporal decom-
position of the phasic muscle patterns of subject 1 and Figure 10B
the seven spatiotemporal generators selected in that subject
according to the R2 shuffle criterion. The asynchronous nature of
the muscle activation waveforms can be noticed in most of these
spatiotemporal generators. For example, in TrLat and TrLong in
w1show two clearly delayed peaks. Finally, the examples of mus-
cle pattern reconstructions and combination coefficients for six
movement conditions illustrate how the organization of the mus-
cle patterns is captured parsimoniously by the spatiotemporal
generators as each movement is reconstructed specifying only
7 scalar combination coefficients (represented by the height of
the rectangles depicting the mean generator waveform over all
muscles).

Finally, muscle patterns of different subjects did not have sim-
ilar spatiotemporal generators. The reconstruction of the data
by generators of all other subjects had a much lower R2-values
(0.37 ± 0.08, mean ±SD) than the R2-values for the reconstruc-
tion of the data by generators extracted from the same dataset
(0.80 ± 0.03) but still higher than the R2-values obtained with
generators identified from randomly shuffled data.

Effect of setting to zero negative values in the phasic muscle
patterns
To identify muscle pattern generators from phasic muscle pat-
terns using NMF we set to zero all negative values resulting from
the subtraction of the tonic muscle activity from the filtered EMG
waveforms. However, to assess the effect of such procedure we also
extracted muscle pattern generators from the unclipped phasic
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FIGURE 9 | Temporal decomposition of phasic muscle patterns. (A) R2

curve for subject 1 obtained by temporal decomposition using NMF. (B) The
four temporal generators selected for subject 1. (C) Example of the
reconstructions of muscle patterns for six movement conditions of subject
1 obtained with the generator illustrated in panel (B) (shaded area: original
data, thick line: reconstructed data, bottom: muscle-specific weights of
each generator).
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FIGURE 10 | Spatiotemporal decomposition of phasic muscle patterns.

(A) R2 curve for subject 1 obtained by spatiotemporal decomposition using
NMF. (B) Seven spatiotemporal generators selected for subject 1. (C)

Example of the reconstructions of the muscle patters for six movement
conditions of subject 1 obtained with the generator illustrated in panel (B)

(shaded area: original data, thick line: reconstructed data, bottom:
combination coefficients represented by the height of the rectangle
containing the temporal profile of each generators averaged over muscles).

Frontiers in Computational Neuroscience www.frontiersin.org March 2014 | Volume 8 | Article 24 | 16

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Russo et al. Dimensionality of generators for reaching

muscle patterns using a gradient descent iterative algorithm (see
Materials and Methods). In all cases the dimensionality of the
generators identified with the gradient descent algorithm from
the unclipped data was close to the dimensionality of the genera-
tors identified by NMF from the clipped data and the generators
extracted in the two cases were very similar. The dimensional-
ity of the spatial generators identified from the unclipped data
was, on average across subjects, 4.75 (according to both R2 knee
and R2 shuffle criteria) and thus differed only by 0.25 from the
dimensionality of the generators identified from the clipped data.
For the temporal generators the difference in dimensionality was
0.5 according to the R2 knee criterion and 0.25 according to the
R2 shuffle criterion. Finally, for the spatiotemporal generators
the difference was 0.25 according to both criteria. The similar-
ity between the spatial generators identified from the clipped data
and the same number of generators identified from the unclipped
data, quantified by the mean normalized scalar product between
matched pairs of generators, was 0.91 ± 0.09 (mean across sub-
jects ± SD). For all subjects the similarity value was significantly
higher that the value expected by chance, i.e., it was above the
95% percentile of the distribution of the similarity values between
generators identified from the unclipped data and generators
identified from the shuffled clipped data. The similarity between
the temporal generators identified from the clipped data and the
same number of generators identified from the unclipped data
was 0.91 ± 0.05, also significantly higher than chance for all sub-
jects. Finally, for spatiotemporal generators the similarity was
0.90 ± 0.02 and also significantly higher than chance for all sub-
jects. We can thus conclude that clipping to zero the negative
values of the phasic muscle patterns affected the dimensionality
and the structure of the identified muscle pattern generators only
minimally.

DISCUSSION
We assessed the dimensionality of the dynamic joint torques
responsible for accelerating and decelerating the arm during
point-to-point reaching movements in different directions in
the frontal and sagittal planes and the dimensionality of pha-
sic muscle patterns underlying the production of those torques.
We used multidimensional factorization techniques, PCA for the
torques and NMF for the muscle patterns, to identify genera-
tors capturing the spatial, temporal, and spatiotemporal orga-
nization of the motor commands. The number of generators
selected according to either a threshold in the total data varia-
tion explained, or a change in slope in the curve of the variance
explained, or the increase in data variation explained adding
an additional generator with respect to the increase obtained
extracting generators from randomly shuffled data was taken
as an estimate of the dimensionality. The spatial dimension-
ality of the dynamic torques was lower than the number of
joints considered, indicating that some of the available spatial
coordination patterns were never employed by the CNS when
generating the joint torques for this task. A single temporal
generator with a biphasic activation profile was identified in
all subjects, in accordance and generalizing previous observa-
tions on the temporal organization of dynamic torques on a
single vertical plane (Gottlieb et al., 1997). However, a higher

number of temporal generators may be required to account for
more complex changes in joint torques in other types of reach-
ing movements (e.g., slow, egocentric etc., see Lacquaniti et al.,
1986). The number of spatiotemporal generators was in most
subjects equal to the product of the spatial and temporal dimen-
sionality and their structure indicated that the spatiotemporal
organization of the dynamic torques was essentially synchronous,
obtained by the temporal modulation of the spatial genera-
tors by the biphasic profile of the single temporal generator.
In contrast, the spatial, temporal, and spatiotemporal dimen-
sionalities of the phasic muscle patterns were higher than the
corresponding torque dimensionality, as expected because of the
non-negativity constraints in the combination of muscle pat-
tern generators, but also higher than the minimum number
required according to this biomechanical constraint. Moreover,
the spatiotemporal dimensionality of the muscle patterns was
much lower than the product of their spatial and temporal
dimensionality, suggesting that specific asynchronous coordina-
tion patterns were used in the generation of muscle patterns.
In fact, most of the identified spatiotemporal generators showed
peaks of activity in different muscles at different times, i.e., coor-
dination patterns that cannot be captured by the synchronous
modulation of one of the spatial generators by one of the tem-
poral generators.

The CNS might generate motor commands by organizing a
few generators, basic elements in a modular architecture cap-
turing shared knowledge across tasks and conditions, to reduce
the number of parameters required for control (Alessandro
et al., 2013; Ruckert and d’Avella, 2013). Evidence for a mod-
ular organization of the motor commands has recently come
from the observation of low-dimensionality in the muscle pat-
terns recorded in many species, behaviors, and tasks (Tresch
et al., 1999; d’Avella et al., 2003, 2006; Hart and Giszter, 2004;
Ivanenko et al., 2004; Ting and Macpherson, 2005; Overduin
et al., 2008; Muceli et al., 2010; Dominici et al., 2011; Berger
et al., 2013) and from neural recordings and stimulation (Saltiel
et al., 2001; Ethier et al., 2006; Gentner and Classen, 2006; Hart
and Giszter, 2010; Overduin et al., 2012). Intramuscular record-
ings during isometric contractions have also revealed that the
number of basic muscle activation patterns in complex move-
ments is very limited (ter Haar Romeny et al., 1984; van Zuylen
et al., 1988). However, motor task and behaviors are accomplished
by the joint torques generated by the simultaneous and coor-
dinated activation of many muscles and to understand how a
small set of muscle pattern generators may accomplish a task
it is necessary to understand the relationship between muscle
patterns and joint torques. The transformation between muscle
patterns and torques depends on several biomechanical charac-
teristics and constraints. There are more muscles than joints,
making motor commands at the level of muscle patterns redun-
dant, i.e., the same torque pattern can be generated by different
muscle patterns. Muscles can only pull and their activation can
be expressed by non-negative values, thus introducing a fun-
damental non-negativity constraint in the generation of muscle
patterns. These characteristics and constraints affect the potential
dimensionality of the joint torques associated to the dimension-
ality of the underlying muscle patterns. For a linear mapping
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of muscle activity into force, an assumption that may be true
only in specific conditions such as submaximal isometric contrac-
tions (Borzelli et al., 2013) but useful for illustrative purposes,
because of the non-negativity constraint, at least D + 1 genera-
tors are required to span a D dimensional torque space (Davis,
1954; Valero-Cuevas, 2009). In fact, by linearity, the image of
the pseudo-inverse transformation of the D dimensional torque
space is a D dimensional subspace of muscle space but such
subspace is not contained in the positive orthant of the muscle
space, i.e., cannot be generated by non-negative activations and
an additional dimension in the null space of the linear transfor-
mation needs to be used to achieve a non-negative muscle pattern
for each torque. In the general non-linear case, the manifold in
muscle space containing all the minimum patterns associated
to a D dimensional torque space may be already higher than
D even before considering the non-negativity constraint. Thus,
the dimensionality of the muscle space must be at least D + 1
to generate a D dimensional torque space for the non-negativity
constraint and possibly larger. However, because of redundancy,
the CNS might use a number of muscle pattern generator larger
than the minimum to optimize some other cost in addition to
the number of control parameters, such as effort. Since the gen-
eration of muscle patterns with a smaller number of generation
requires in general more effort, the dimensionality of the muscle
pattern generators might result from a trade-off between compu-
tational complexity and effort. We found that the muscle pattern
dimensionality is indeed larger than the minimum prescribed
by non-negativity, likely an effect of non-linearity but possibly
also due to a choice of generators capable of achieving the same
motions with less effort. Future investigations comparing tasks
with similar kinematics but different effort might help clarify this
point.

As mentioned in the Introduction, muscle pattern gener-
ators can be associated to force-field primitives (Bizzi et al.,
1991; Giszter et al., 1993; Kargo and Giszter, 2000a,b; Giszter
and Hart, 2013), endpoint force or joint torque generators that
depend on joint angles and velocities and are linearly combined
using the activation coefficients of the muscle pattern genera-
tors. Competence of force-field primitives to generate observed
force and kinematic behaviors has been demonstrated in the
frog through forward biomechanical simulation (Kargo et al.,
2010). Similarly, a forward dynamics simulation of a muscu-
loskeletal model of the human leg has shown that the com-
bination of a small number of muscle pattern generators is
sufficient to perform the basic sub-tasks of walking (Neptune
et al., 2009). Moreover, a recent simulation study using a mus-
culoskeletal model of the human arm has indicated that spa-
tiotemporal generators adequate to perform reaching movements
can be learned through reinforcement (Ruckert and d’Avella,
2013). Here, in contrast, we did not perform forward dynamics
simulation to assess the competence of muscle pattern gener-
ators and associated force-field primitive to control reaching
movements. We focused, instead, onto the dimensionality of
recorded muscle patterns and the dimensionality of joint torques
estimated from recorded kinematics by inverse dynamics. Force-
field primitives are associated one-to-one with muscle pattern
generators, i.e., they have the same dimensionality. Because of

the non-negativity of muscle pattern generator activation coef-
ficients and the non-linearity in the muscle-to-force mapping,
such dimensionality is necessarily higher than the dimensionality
of the joint torques, i.e., the number of torque generators nec-
essary to adequately reconstruct the observed torques by linear
combinations. As different numbers of muscle pattern genera-
tors and force-field primitives can potentially generate the same
set of observed torques and thus being equally competent to per-
form a given behavior, comparing the dimensionality of muscle
patterns and joint torque provides additional information on the
strategy that the CNS employs to organize a modular control
architecture.

We assessed the dimensionality of joint torques and muscle
patterns according to three different definitions of generators
(spatial, temporal, and spatiotemporal) and we could then also
compare, within each dataset, the different types of dimension-
ality. For the torques we found that the dimensionality of the
spatiotemporal generators was equal to the product of the dimen-
sionalities of the spatial and temporal generators, suggesting that
such generators can be obtained as the product of spatial and
temporal generators (Delis et al., 2014). The spatial dimension-
ality was two or three, i.e., less than the number of angular
DoF involved in the task, indicating that the CNS selected spe-
cific coordination strategies already at the kinematic level. The
temporal dimensionality was one, indicating, in accordance with
previous observations (Gottlieb et al., 1997), that the temporal
organization of the dynamic torques is very simple: a bi-phasic
profile shared by all joints and movement conditions (but see
Lacquaniti et al., 1986 for more complex torque profiles). The
dimensionality of the spatiotemporal generators was in all sub-
jects equal to the spatial dimensionality because, given a single
temporal generator, each spatiotemporal generator was obtained
by the temporal modulation of each spatial generator by the tem-
poral generator. Consequently, the spatiotemporal organization
of the torques was essentially synchronous. In contrast, the num-
ber of spatiotemporal generators for the muscle patterns was
much less than the product of spatial and temporal dimension-
alities. Indeed, spatiotemporal generators captured asynchronous
activations across muscles that could not be obtained by the
modulation of a single spatial generator by a single temporal
generator, which necessarily produces a synchronous pattern.
Thus, spatiotemporal generators appear to provide a very com-
pact representation of the organization of the muscle patterns
(Delis et al., 2014). However, differently from our previous anal-
yses of muscle patterns during reaching (d’Avella et al., 2006,
2008, 2011; d’Avella and Lacquaniti, 2013), in the present spa-
tiotemporal decomposition we did not take into account the
possibility of shifting in time the onset of different genera-
tors (Equation 8) because in this way we could use the same
NMF algorithm used for spatial and temporal decomposition.
We found a larger number of generators without time-shifts
than the number of time-varying muscle synergies (with time-
shifts) reported before. Thus, additional structure in the muscle
patterns can be captured by allowing the independent modula-
tion of the time of recruitment of the generators thus allowing
for an even more compact representation of the muscle pattern
organization.
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The validity of our observations depends on a number of
assumptions made in the analysis of the torque and muscle activ-
ity data. Concerning the estimation of the joint torques from the
recorded motions of markers positioned on the subjects’ arm,
we relied on a simplified model of the human arm. We assumed
that the shoulder was a spherical joint, i.e., all three rotation
axes intersect at a single point, we estimated the length (Winter,
1990) and inertial parameters (Zatsiorsky and Seluyanov, 1983)
of each segment as a function of the height and weight of each
subject. To assess the effect of potential inaccuracies in the param-
eters of our model, we performed inverse dynamics varying the
mass and height of each subject up to ±20% and we found
that the estimated joint torque dimensionality changed only in
a small fraction of cases. Thus, we believe that the estimation
of torque dimensionality is robust to small inaccuracies in the
anthropometric parameters. Concerning the identification of the
muscle pattern generators with NMF, in order to be able to run
such algorithm, we set to zero all samples with a negative value
after subtracting the tonic components. We assessed the effect
of such procedure by identifying muscle pattern generators from
unclipped data using a gradient descent algorithm and we found
that both the dimensionality changed only minimally (less than
0.5 in all cases) and did not significantly affect the structure of the
generators. Concerning the criteria for the selection of the num-
ber of generators, we used a threshold based criterion for torques,
a criterion based on the detection of a change in slope (i.e., a
“knee”) in the R2 curve for muscle patterns, and a criterion based
on the comparison of the slope of the R2 curve for the generators
extracted from the original data and those extracted after ran-
domly shuffling the data (along the rows of the data matrix). All
these criteria rely on the assumption that the data are generated
by a number of generators smaller than the maximum dimen-
sionality and that a fraction of the variation observed in the data
is due to noise. Such assumption is shared by all previous studies
using multidimensional decomposition to identify muscle syner-
gies or temporal components but it is clear that it is not possible
a-priori to exclude that, once a specific number of generators has
been selected, the additional dimensions attributed to noise might
be also necessary to capture the structure in the motor com-
mands or, vice-versa, a generator might actually describe noise
instead of structure in the motor commands. Moreover, unless an
independent estimation of the level of noise in the data is avail-
able, the selection of the number of generators depends on ad-hoc
choices of thresholds and parameters. However, as the determi-
nation of threshold on the MSE of the linear fit of the terminal
portion of the R2 curve, used for the R2 knee criterion, is less
dependent on the amount noise in the data than the threshold
on the R2-value, used in the R2 threshold criterion, we prefer,
whenever possible, to use the former criterion, as we have done
previously (d’Avella et al., 2003, 2006; Cheung et al., 2005), to the
latter, also used in previous studies (Tresch et al., 1999; Ting and
Macpherson, 2005; Torres-Oviedo et al., 2006; Roh et al., 2012).
Unfortunately it was impossible to use the R2 knee criterion for
the spatial torque dimensionality, as the maximum dimension
was 4 in that case, and we could only estimate the residual of a
linear fit of the R2 curve from 1 or 2 to 4 generators, i.e., evaluat-
ing the presence of a knee only at 1 or 2 generators. We then used

the third criterion to compare more directly both datasets. The R2

shuffle criterion (Cheung et al., 2009) is based on the assumption
that the multidimensional structure but not the noise is affected
by randomly shuffling the data. Thus, the selection of the num-
ber of generators in datasets with different amount of noise is
based on the comparison of the slope of the R2 curve for each
data set with the slope of the R2 curve of a random dataset with
comparable level of noise. In most cases the number of generators
selected by the two criteria either matched exactly or different by
one.

In conclusion, whether spatial (time-invariant muscle syn-
ergies), temporal (temporal components or patterns), or
spatiotemporal (time-varying muscle synergies) generators are
fundamental building blocks in a modular control architecture
and how are they implemented in the CNS remain open and
debated questions. Our comparison of the dimensionality of
muscle patterns and joint torques suggests that the larger dimen-
sionalities and spatiotemporal complexity of the muscle patterns
with respect to the joint torques may be required for the CNS to
overcome the non-linearities of the musculoskeletal system and,
exploiting its redundancy, to flexibly generate endpoint trajec-
tories with simple kinematic features using a limited number of
building blocks.
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