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THE NONCOMMUTATIVE MARKOVIAN PROPERTY

L. Accardi

The notion of the (d)~-Markovian property was introduced for a discrete random field by R. L. Dobru-
shin {11, E. Nelson [2] gave the {ormulation of the Markovian properties for the continuous case and
showed that this concept plays a significant role in the theory of Bose fields, The attempt at expanding the
Nelson method to the case of Fermij fields naturally leads to the problem of defining the noncommutative
Markovian property.

On the other hand, in conncction with the results obtained by H, Araki [3] applying to quantum lattice
systems, Ya. (i. Sinai noted ([], appendix to the Russian edition) that an investigation of such systems
leads to the problem of defining the concept of a "noncommutative Markov chain® {i,e., to the problem of
defining the class of states on the algebra of quasilocal observables on a one-dimensional quantum system
which would form the analog of conventional Markov chains},

The present paper advances a general definition of the noncommutative Markovian property and
shows that the structure and properties of the corresponding states in the uniformly hyperfinite case have
noteworthy analogies with conventional Markov chains, :

A relationship is established between noncommutative Markovian states and Gibbsian states con-
structed by H, Araki [3],

The author thanks Ya, G. Sinai for his fruitful discussion of the present paper,

§1, General Definitions

Definition 1, Let d(B) C BC A he C*-algebras, The quasiconditional expectation with respect to the
triplet d(B) € BC A is called a linear mapping E : A — B with the following properties:

1) E@@) =0,ifa€A,a=0;2)¢ (¢c:a) - cEfa) Ve d(BL,Vaec 4; 3)|| E (CHI < eIl Ve'e 2 (B),
where (.)' is the commutant of A,

For example, if P: A —~ B is the conditional expectation {sce [5]) and H € &(B)', JHI| =< 1, then E{a) =
P(H*all) determines the quasiconditional expectation with respect to the triplet d(B) C B.C A,

Definition 2. Let d(B) C BC A be the same as they are above, and let E be the quasiconditional ex-
pectation with respect to this triplet. It is said that E has the (d)-Markovian property if E(d(B) N A} C
d(B)' N B,

The quasiconditional expectation given in the example of Definition 1 has the (d)-Markovian property.

Let {da}ecs be a filtering family of C*-algebras, andlet d: 5 —§ bea mapping such that d (e) <

‘e, e <B=>d(a) < d(P). Itis said that the family {£;,}.<s of quasiconditional expectations relative to the

triplets Aoy = 4, C 4, has the (d)-Markovian property if each £4q has this property (i.e., if By,
(Aaay N Ap) A;{‘,, [t gy 0 < §  (the commutant is understood in relation to 4 = C*-lim A, which is the

C"‘-—inductiv._e limit of the family {4 )uca)).

It may be proved that each quasiconditional expectation has the (d)-Markovian property.
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Definition 3. Let {4, }.ey and d be the same as they are above. The state ¢ on 4 = C*lim 4, is

called (d)-Markovian if there exists a family {Ep.} of quasiconditional expectations relative to the triplets
Agey = Ay & Ay which is such that ¢ (ag) = ¢ (K, (ap)) Vag = A, a < B.

Remark 1, If ¢ is a (d)-Markovian state and {£;,} is the corresponding family of quasiconditional
expectati_ons, then

Eﬂqﬂ: (aa) = dg (mOd (P) Vao. = Aa, C!.-< ﬁ
The latter equation should be understood in the sense that
9 (Ep o (aa)) = ¢ (2a) Vo, & Ay, a <P

We shall continuc to hold to this agreement further on, Specifically, if {Ep.} is another family of quasi-
conditional expectations satis{ying the conditions of Definition 3, then £y, o == Epq (mod @), Therefore, the
(d)-Markovian state defines the corresponding family of quasiconditional expectations uniquely. Moreover,

Remark 2. The property of being a {d)-Markovian state depends essentially on the family of local
algebras {4, }.cs . Further on the dependence will be assumed in the general case,

Let S be a topological space and & a family of closed subsets of S such that
I) the union of all sets in & is equal to S;
Mifres i}., then S~F and 9F (the boundary of F) belong to ¥ .

The family of local algebras on S is the family of C*-algebras {dp}reg which is such that § satis-
fies I}, I}, and

O) FS 6= Ap & Ag (isotonleity),
1V) AR = Ag-F {duality}.

(For the open subset U C 8, Ayy is defined ag a C*-algebra generated by all Ay, F & &, contained in
U, while the commutant is understood in relationto 4 = € * - lim Ap,) The context of the local algebras is

natural for formulation of the noncommutative Markovian property.
Definition 4. The Markovian state ¢ on 4 = C*-lim Ar i3 a {d)~Markovian state in which the mapping
of d is defined as d(F) = F {the interior of F), F & §.

I ¢ is a Markovian state and {£¢rlrcy is the corresponding family of quasiconditional expectations
relative to the triplet Ap < Ap C A4 , then the Markovian sfate can be expressed by the relationship

Eor(Agp N AT Agp NAr FSG, T, 6.

In the general case the relationship A, g ) Ar = Apr  does not hold, Therefore, the relationship Egr (45 3 f
Ag) € Asr, F = G, F, G=F, will be called "the strong Markovian property,” Assume now that {Ap)rs® is
such that if F C G, then AQ is generated by Ar and Ag-F. In this case we shall write AG = AF V Ag-F

and say that the family {AF} is factorizable, Moreover, let E@,T be a conditional expectation; then it can
easily be seen that for G =8, Eg,F = EF is a strong Markovian property equivalent to the relationship
Er(Ag-1) € AsF. Inthe commutative case the family of local algebras is factorizable (see [6]) and the re-
lationship given, as can easily be shown, coincides with the Markovian property in the Nelson formulation,

it being tiue that the (d)-Markovian property generalizes the analogous concept formulated by Dobrushin [1],

§2. The Uniformly Hyperfinite Case
let4d =¢C t-]LxE Myy,n1, where M|, n) is a factor of the type Ipp, pn € N, while all M{[q,n) are assumed

to have one and the same unity. For m =n we place Mimn) = Migm-n 1 Mren). If @ is a state on A, then
we use @[y nj to denote the constriction of ¢ on M|y, n] and ¢n the constriction of ¢ on M[n,n] = Mn (which is
-factor). The Markovian state will be a (d)-Markovian state, where the function d is defined as d: {0,
g n] — {0, n—1], The Markovian property for the quasiconditional expectation Ensgn @ Migns) — Mpom) is ex-
pressed thus: Enu,n (Miansn) & M, . The family {Myy, )t is factorizable, and the Markovian property coin-
cides with the strong Markovian property.



THEOREM 1. Let ¢ he a Markovian state on A, Then ¢ defines the pair {{on); fp(,} such that the fol-
lowing hold: {i) ¢, is a state on Mg; (i} 0, 1 My — £ (M, M,) is 2 linear operator such that the mapping
U it @ Myny gy =+ 0 (a,) lap, ] = M, is Pn-1-positive in the sense of [7] with a norm not exceeding 1.

(£ (My41, M,) is the space of linear cperators from My, into Mp,) (iii) Let bi € Mi, oj(by)* be conjugate
with respect to g3(bj), 0 =i =n, for each n ¢ N, Then the equation

Pro,nl (Bor . 2by) = [8a (Ba)" -+ -3 (B0)" o) (1)

completely defines the projective family (@[o,n])- Conversely, each such pair defines a unique Markovian
state on A,

Proof. Let ¢ be a2 Markovian state, Then there exists a family {En,n-—t} of quasiconditional expecta-
tions relative to the triplets Mion-n < Mion-13 © Myo.a), which has the Markovian property, and ¢ is com-
pletely defined by the inductive relationships

C0,n1 {010,m1) = Po, noay (B, o (2g0,mp)  Vago,ny € Mig,ny- (2)

Since {M [o,n]} is factorizable, the quasiconditional expectation Ep y_, is defined by its values on Mn-y,

nj.
Let op be defined by the equation

On (bn) byl = EMH. n (bn‘bnu ). bn = M, by = ﬂfm.l. (3)

Then the first statement in (ii) and (iii) derive, respectively, from the Markovian property and from Eq, (2),
From factorizability it follows that Mo, niy = Ry (Mr, nagy)T and Mto, ny = My, , (M,); therefore, positive-
ness of En+1,n is equivalent to Pn-j-positiveness of the mapping n 8y € M, nag) = On (0,) (2, = M, ,
and this proves (ii}, '

Assume conversely ltha,t {(ow); qoa} is a pair satisfying (i), (if), (iii). The family (‘P[o,n]) is projected
and defines a unique state ¢ on A. Let Eorion 2 My, nigg — My, 1 be a linear mapping that is defined by
means of (3) and the equation

En+1, n (b[o. n-1] 'b[n,'nu]) = bfo, n-1}* En+1, n (b[n, n+1])r b[a, n-1] = M[o.ﬂ~l]°

The concepts presented above prove that Enti,n i8 2 quasiconditional expectation and that the Markovian
property derives from (ii), The quasiconditional expectation Em,n+s is defined by a composition for m =
n; the state ¢ satisfies the relationship (2) and is consequently Markovian, The theorem has heen proved,

Remark 1, The fact that Eq. (1) defines a projective family of states may be expressed by the equa-

tion
‘ On (bp) [1] = b, (med o). L (4)
Remark 2. In the commutative case, (1)} takes the form
Plon) (Bor + v +bp) = |"Prbpe Py by L P, ), )

where tPy is a transposed stochastic matrix; w, is a stochastic vector; bk is a diagonal matrix, and w,(u)=
:Zmiui, wy = (w;), u = (2;}. If bk are projectors, then the right side of (1') yields the expression for joint

< .

probabilities in a conventional nonuniform Markovian chain,

Assume now that Zn =op (1) for eachn € N, The sequence {Zp) is called a sequence of transitional
matrices for the Markovian state ¥. The following concept justifies this name,

COROLLARY 1, The operator Z, e £ (M,,, M) is defined by the matrix . (E0%,), 1 <C i, 7 <C Tns
15 0, f < Yoy, whose coefficients satisfy the relationships

aj‘?aﬂ == E;('?.}rw (5)
Orsy .
>} Ela = 85 (mod g). (6)

x=]

Proof, From the property (ii) in Theorem 1 it follows that Zy, s positive and therefore transforms
Hermite operators into Hermite operators, which proves (5), The relationship (8) is a particular case of
Eq, (4). .

T o, (4) isa matrix algebra of order n x n having coefficients in A,




Using Wp to denote the density matrix of ¢y, we derive the relationship Wpyy = WpZp, from (1)
relationship represents the analog of the well-known relationship vp4y = vy Py {Pp is a stochastic mat
vn 18 a sfochastic veetor) for a conventional Markov chain, One may write the equation

Wy =W2Z(s; 1), s< ¢

in a more general way, where Z(s; s) =1, Z (s; s + 1) = Zg,and Z(a; t) satisfy the noncommutative Ch
man—Kolmogorov equation Z{r; t) = Z{r; s} - Z(s; t), r =5 =t. It may be proved that Theorem 1 als:
holds for continuous parameters of these equations; then applying reasoning which is analogous to the
soning used in the commutative case, we derive the noncommutative direct Kolmogorov equation (d/d
W(t)S(t), where the operator B - BS{) transforms Hermite operators into Hermite operators with a

trace for each t. A simple example of an operator of this form is B — } [B, H{t)] = i{BH{t)~H{t) B}, w
H{t) = H(f)*. Substituting this operator into the noncommutative direct Kolmogorov equation, we chtai
{d/dty W(t) = i[W(t); H{t)] (i.e., we obtain the Schridinger equation for the density matrix}). Converse
starting from the Schridinger equation, we obtain the semigroup K(s, t) of matrices whose coefficient
satisfy the relationships (5) and {(6) which define a noncommutative stochastic matrix.

§3. The Uniform Case

Unlike the commutative case, the Markovian state is not defined by just the initial distribution ¢

- the sequence {Zp) of transition matrices; it is necessary to know the sequence {op). In this section it

proved that nevertheless, the ergodic behavior of ¢ depends solely on the transition matrices. Prese:

the notation in the preceding section, let us consider the case when Mp = M does not depend onn. In

case A=~® M , where M is a fixed Iy-factor. We use Jy to denote the insertion of M into the n-th fac!
N

and products. The shift operator T in A is an algebra endomorphism, which is defined by the propert
ToJy =« Joyy (2> 0). It is said that ¢ is stationary if ¢ T=¢. let¢ = {(Un); gon} be a Markovian sta
We shall consider linear operators o, : Af — & {M) which are such that £,., ,» (/. {en) Jusltn)) =

= J, Iou (au) [auﬂn'

ILEMMA1l, letg= {(o-n); (po} be a Markovian state on A, and let Zpn = on(l) for each n. Then @
stationary if and only if 1) Zip, = 94, 2) 0, == 0, (mod §), Vn < N.

Proof, The sufficiency is obvious, If ¢ is stationary, then for each b € M the equation
@ (Jy (B) = Loy (B)* Zowel (1) = la, (0)* gl (1) == @, (1)
holds, whence Z;% = @q, 0y = 0y {mod ¢)}. The properties 1) and 2) derive from this by induction,

Thus, the stationary Markovian state is defined by the pair {o; ¢}, where o(1)* ¢, = ¢, Since v
shall consider Markovian states for different initial data Pq, it is assumed in this section {in accordar
with the agreement adopted in the commutative cage) that Eqgs. (1) and {2) in Lemma 1 hold absolutely
not only for modulo ¢. 2

For a stipulated ¢ = {o; tpo} let the linear transform Sim,n : My, o) — £ (M), m < i , be defined
follows:
T (bnde oo Tba) P2 6 (bm) [0 Brast) [ - - -6 B 1. 1L bEM, m<i<n.
Let us place oL = Sio, ny (Mpp, e)* o= M* for k€N,

THEOREM 2, lLet ¢ = {cr; qoo} be a stationary Markovian state with the transition matrix o(1) = 7
Then if 1 is the sole unitary eigenvalue of Z and at the same time is prime, it follows that ¢ is a facto

state, Conversely, if ¢ is a factor-state and G Sk = M*, then 1 is the sole unitary eigenvalue of Z a1
k=1 .
prime,

Proof, Necessity, First of all note that if k = m =n, are stipulated, then for each b € M, k]» ©
M[m,n] We have ¢(b.c) = [e{u, 51 (B) 96 (2™ *&pm, n1 (6) 11]) . Moreover, from the properties of quasiconditio
expectations it follows that |Zl =1 and || &, n; (¢} [11]] <[l ¢|l. From the fact that V — VZ conserves
trace it follows that Z(1) = 1, Therefore, from stationarity in the results obtained by S, Kakutani and K
Yoshida [8] it follows that lim Z¥ = { ® q,, Where (1 ® @) (a) = 1.9(a), a €M, Moreover, from statior

it follows that @4 (&, n) (o) [1])= Qo (27, oy (0) 11]) = o (). Therefore, if k€ Nand b € M[s, k] are stipul
there exists a mg € N such that for n = m = mj and V¢ & M, ., we have




o bc) — byl cl|. (8)
From the arbitrariness of n, it follows that the inequality (8) is equivalent to the factorizability derived by
R. T. Powers [9], and therefore ¢ is a factor-state.
Assume conversely that ¢ is a factor-state. Then Eq. (8) holds, and using the compactness of the
unit sphere in M{o,k]’ one may write it in eguivalent form
Fi 1275 — 1. ® @il (@) | <l el Ve M,

for eachy = &, ; (0) gocl 4] < t. But from the inequality presented above and from the statement of
the theorem it derives that tim 27 1@ o, with respect to the norm, From this it follows (see [8]) that

v

1 is a prime cigenvalue of Z, being unique modulo 1.

§4, Gibbsian States

In this section we prove the following theorem,

THEOREM 3. EFach one-dimensional Gibbsian state is a limit of the inverse (d)-Markovian states
for d — e« in the 1I. Araki sense [3], Under these conditions convergence is exponentially fast,

The proof of Theorem 3 will be split into three steps:
{1) the structure of the inverse {d)-Markovian space is described;
(2) the class of states which are examples of inverse {d)-Markovian states is formulated; -

(3} it is proved that by means of states constructed in (2) one may approximate the arbitrary Gibb-
sian state constructed by H, Araki [3].

Definition 5. Let M be a matrix algebra of the type7,, 4 = ® A ; let ¢ be a state on A, It is said
e —— N

that ¢ is an inverse (d)-Markovian state if a family (£, n1. 11, n1deen  exists which is such that

1Y Ero npenon1t Mpg, vy~ My, oy is a quasiconditional expectation having the (d}-Markovian property,
where d is defined on the set of all segments of the type {1, n] (n € N) by the formula d: (I, n] — [d+2, a].

2) For eachn =d + 1 and g, 0] € My, 41 the equation

? (@ro.m)) = @ (TeLTo, n, 12, n (@0, m)) (9)
holds, where T : M{i, w] ™ A is an algebra homomorphism that is defined by the equation T¢ = Jy = Iy
(k = 1), ’
According to the general definition 2 (see § 1) the (d)-Markovian property can be expressed in this
case by the relationships £, u), (1, w1 (M(o, ariy) & My, uany for each n € N,
The following theorem determines the structure of inverse {d}-Markovian states,

THEOREM 4. Let ¢ be an inverse (d}-Markovian state on A= M. Then a pair {o; Pro, 11} exists
e N

which is such that: 1) ¢, q) is the state on M[p,al 2) 0: M — % (M, 4) is the linear operator such that
the mapping a ® ajo4) € ¥ - ® M4, 41 — o (@) lage, 1) & Mo, iy i3 @%@ I-positive (in the sensge of [7]) with a
norm not exceeding 1; 3) for each 2 € Mj, 0 =i = n, the equation

Prong(Jolao) ... Tale)y={o (@as)" ... G(an).(P{o,d}i(Jo {(@e)« o..r Jy (@)

defines a projected family ((p[g,n]). Conversely, each such pair defines a unique inverse (d)-Markovian
state, .

Remark. If one compares Eq, (3) in the theorem cited ahove to Eq. (1) which describes the general
structure of Markovian states, it is immediately evident that for d = 0 the latter is derived formally from
the former by inverting the sequence of the indices {d+ 1, , . ., n}. It is this which justifies the name
"inverse Markovian state,"

Proof of Theorem 4. Let ¢ be an inverse {d)-Markovian state on A, and let (E, .y, (1, nilnen be the
corresponding family of quasiconditional expectations, Then if ai 6M, 0 =i =4d+1, it follows that for
eachn=d+1

bt enr—— e




UP(TCE[n. n], (1. n} (Vo (2a) - ... S (adu))) =S, {ap)-.... Jan (ﬂdu))- (10) !

Let us define the mapping of : M — & (Mo a) :
ot (2air) (e, a)l = TiEpy, oy 00, w3 (Epo,u1 T {0, ).
Then by virtue of the {d)-Markovian property
Epo. ), tr, ny{ag0,41- S aayg (@) E My, 00y VRe N

R e

for each Ao, ) & Mg, 47, ayy = M « Therefore, the mappings crl(n) are correctly defined, But then from (10),
it follows that

f

L

Pro,d] (ﬁgd“)(adn) [2i0,0)]) = Plo,q] (0(1") (@a4s) {870, u])

for each «ay., e= A7 ang Mo a) & My, 41 . In this case we write, as usual, of¥ = gl _ o(mod 9) Ve N,
Finally, the equation in the statement 3) of the theorem derives from the Properties of quasiconditiona]
expeciations for repetition of the Procedure deseribed above,

Conversely, let the pair {o; g4, o1}, satisfying the conditiong 1), 2), 3) be stipulated. Then the pro-
jective family (‘P[o,n]) defines a unique state on A, Iet us define the family {Eo, »)0 11, sHaen by meang
of the formula

T T e s, e e g

Epo, v, 1, n) (@, 4411 Bl n}) = Qg n)- Ky, 1, 1wy (o, da1),
To(a4,) [e.a)] = Epg.ny. . 18, ) S aa1 (2g0)),

where T denotes the endomorphism of a rightward shift and o, 5) = Mg, gy, a4 = M, Then, by virtue
of the factorizability of the family (m [e,n}])s each Eroynl s ny iS5 2 Quasiconditional €xpectation satisfying
the {(d)-Markavian property, where the funetion 4 is defined above, Moreover, Eq. (9) derives from the
condition of the theorem, Therefore, ¢ ig an inverse (d)-Markovian state, The theorem has been proved,

|
¢
i
Note that the congruence condition for the family (cp[u,n]) s equivalent to the equation o (1)* @py, 4) = i
£

b

In order to formulate specific examples of inverse (d)~-Markovian states the following lemma ig ?
useful, [

LEMMA 2, Let ¥ (a state on A) be defined by the equation Q) = (,a(K:QKO)/qo (KO*K), Q€ A, where ¢ ;_'
Is a state on A. Assume that the following conditions are satisfied: 1) K, ¢ My 4] (where_d €N is fixed), z
2) An operator K € Mo, 4] and a number A » 0 exist which are such that 9.2 = g, where & denotes a lin- 3
ear operator A —~ A, defined ag % Q) =r,.5, {K*QK); (75: A — My ] 18 defined as %, (/, {a}b) = b7 (a);
A= M b= My, <) ). Then P is an inverse {d)~Markovian state, r

- -:-"A“w—qw-':r‘rv:-c».v-r_—p‘.»._,.....,.-—.,Mf..:‘

Proof, Let Yo, =My, a1, 09, = M. Woe place
P e lato.al = NI, (5 (Kago, 1K) T, (K gy K.,
Then forn >d
Yo (a0) - - T @) =[o (@an) o (ag,,)* - .. . . S (@) P10, a1 (Jo (20} .. . J, (za)}-

Moreover, the mapping J;,, (@441) - o, dj — O (gg4;) lag. 4;) is compl'etely positive, From Theorem 4 it then
follows that ¢ ig an Inverse (d)-Markovian state,

From Lemma 2 it iz not difficult to derive the following,

Proof of Theorem 3. Let ¢ be a Gibbsian state on A corresponding to the finijte potential &, H, i
Araki [3] proved thaf such a state always exists and has the form ¥(Q) = PKYQK,) /o (KKy), Q € A, where B
Ky €A, and ¢ satisfieg the relationship ¢, & - Ap, where 2: 4 — 4 ig the linear operator defined by the !
equation £ (0) = T, (K*QR), Q= 4, for a certain K & A, The operators K, K; can be inverted, and there.
fore they may be approximated in the norm by the sequences (Ka), (K, q) and inverse operators which are j
such that Kg, K d € M[o,d}- From the reasoning presented by H, Araki ([31, § 7) it then follows that gtates :

#@ on A and a number Ad > 0 exist which are such that 0Ly = Ayp®, and 24 (Q) = T3, (KiQK,). Con-

$(0) = 919 (K 0K, 4)1ot0 (1 Ko, o)



ig an inverse (d}-Markovian state for each d €N, But %, and consequently ¢ also, depend continuously on
K (see [3], § 5). Hence, it follows that Lim Py == ¢ (in the norm). This proves the first statement of the

theorem. The second statement derives from the fact that the approximating sequences may be dctérmined
by trumcating (starting with the d-th term) all serics in the cxpression for K and K, by means of the Tomo-~
naga—Schwinger—Dyson formula (see (3], § 6). The theorem has been proved,
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