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As for the tensor trajectories () the econcept of the peripherality and the validity
of eq. (6) are still an open question. We have alzo to answer the question as to whether
or not the HISH can be generalized to the double helicity-flip amplitudes.
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Fig. 2. — Theoretical curves for helicity-flip amplitudes. The parameters are the same as in Fig. 1.

It should be remarked that the physical meaning of the constants ¢(b) and s are
not self-evident. The constant ¢ (independent of b) will have an interrelation with the
F/D ratio which is known to stay approximately constant in the s.channel helicity
amplitudes (8-14).

We conclude that the helicity-independent structure hypothesis works fably well
in the p exchange process at intermediate energies and that the peripherality of the
helicity-nonflip amplitude is not the consequence of the absorption. In fact the cross-
over zero has been reproduced by the HISH together with the NWSZ in the residue
of the helicity-flip amplitude. It would be worthy to emphasize that the absorption
was necessary only to remedy difficulties in the phase of the Regge-pole amplitudes.
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Let & be a system whose (measurable) phase space we denote by (2, %). The classieal
(Schridinger) description of the system is completely accomplished by its trajectory
in the following sense: there is a 1-1 correspondence between the set of all measurement
operations on the system and an Abelian algebra o7 of real measurable functions on
(2,%)(*). The content of the theory is specified by this correspondence; its aim is the
computation of the values f(§,), for 7 in &/ and t&R, which are the results of the
measurement operation corresponding to f, performed on the system at the moment i.
The transition to the IMeisenberg point of view needs a further hypothesis, namely:
the state of the system at the time ¢ is uniquely determined by its state at an arbitrary
time f,, by

(1.1) &= Tibus Ti,€ Aut (2, %),

where Aut (2,%) is the group of automorphisms (1-1, bimeasurable mappings)
of (02,%).

A gystem & which enjoys this property is called a (measurable) dynamical system.
With the notation f(&) = E(f), ()= jnf‘, Te Aut (2, %) the theory purports to com-
pute the values

(1.2) & =E @01, fest .

Here the s are characters of .7, so that knowledge of the expressions (1.2) is equi-
valent to knowledge of the expressions

(1.3) &R ) e (e f)1 jiest, 1<i<in,

(*y To a physicist, the introduction of the space of states as a noumenic entity separated by the
(phenomenic) algebra of the ohservables may seem awkward, but reasons of eclarity—mathematically
supported by Gel'fand’s isomorphism theorem——suggest this approach.
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We call these expressions the « Green’s functions » of the system & In a probabil-
istic approach to the deseription of a system onc is no longer concerned with values
(&), but with expectation values

(1.4 &) — [1a¢ = [ararpa,
e

Q

where, now, & is a probability measure on (2,%) and M(f) denotes the multiplication
operator by f. Fquations (1.1), (1.2), (1.3) can be kept in this new interpretation with
the further condition that operator Tiu, in (1.1), maps probability measures into prob-
ability measures.

This last condition, plus linearity, defines a Markov operator (ef. (1)). In such
case the system is called a « Markov gystem » and the (semi)-group equation for Tfﬂ
which follows from uniqueness is the well-known Chapman-Kolmogoroff equation. The
gimplest Markov operators are those defined by the equation

(1.5) Ple) = £ T, Te Aut (2, 5B) .

In this note we shall consider only such operators (%), i.e. the probabilistic description
of systems with a deterministic evolution. Also in such circumstances the theory aims
at computing expressions (1.4), which are now no longer equivalent to (1.3) because
of the loss of multiplicativity. If we write (1.3) in terms of (1.4) and perform the « change
of reference» Qe Aut (2,4) (**) at time £, (1.3) becomes

(1.6) (M(7,) - QUMfe, ) oo M(F) &TH2)

{te=0, fr,= Tg_‘ f,): this is no longer eommutative in the j_f(ft{)’s. Y0 we fix the order
f,< ty<i...< 1, in the expression for the Green functions and interpret them as joint
expectation values of the observables f, at time #, taken in the reference frame ER,.

Both expressions (1.3) and (1.6) resemble now the well-known ones
(1.7) { Qo3 pr,(11) oo P, (fn) o> »
which give the vacuum expectation value of a time-ordered product of field operators.
The main difference is that (1.3) is a real expression, linear in &, while (1.7) is a com-

plex expression quadratic in £,. Thus one could be tempted to write, in a purely formal
way, expression (1.3) (respectively (1.6)) in the form

(1.8) VEs 04,(fy) e 05, () VED

and to interpret /& as a vector in a certain Hilbert space, and the 6,(f,)’s as linear
operators therein.

() E. Hopr: Journ., Rat. Mech. Anal., 3, 13 (1954).

(*) That the general case can, in most circumstances, be reduced to this follows from the results of
VERCATE (*).

(2) A. M. VeErCOIK: fsv. Acad. Nauk 5S8R, Ser. Mal., 29, 127 (1965).

(**) Following the indications of (%) we try to keep as general as possible the group of transformations
-of refercnce.

(*) F.J. Dyson: Bull, dmer. Math. Soc., 78, 635 (1972).
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The results listed below show that there is a natural way to give a rigorous meaning
to expression like (1.8), i.e. that it is possible to define an operational caleunlus in which
« square roots of measures » correspond to clements in a Hilbert space. The main fea-
tures of thig correspondence are the following:

Banach space .# of bounded measures = IHilbert space #° of «square roots of
measures »,

Markov action of Aut (2,4) on .# = real-unitary action of Aut(2,%) on
Abelian algebra of multiplieation opera- — «locally » maximal Abelian algebra o7 of
tors by functions in L*=(02,%), on .# operators on .
Turthermore one has (*) «locally » (cf. Proposition 6 below):

o ® Aut (2. F) = B(F) .

These features suggest a deep connection hetween the present work and recent ideas
in quantum field theory (cf. (*%) for example). This connection will be discussed else-
where at length. We now list some results.

Let (2,4) denote a measurable space and .#(2,%) the Banach space of bounded
real measurcs on (£2,%) endowed with the « total variation norm». We write =<y
for two disjoint measures, and .#*+(2,%) for the conc of positive measures.

Theorem 1. There exists a Hilbert space #(02,%) and an homeomorphism
ol (R, B)—~H(2,%) enjoying the following properties:
1) ||2lz@ o= 2@ 2 Vael (2, B),
2) {a(w); x(y)y = 0, if and only if sLy, Vu, ye.#+(2, %),
3) a(® -+ y) = «(x) + a(y), it and only if Ly, Vo, ye.#(02.%),
4) o) = \/I-a(a;), AERY, 2 H(Q, %),
5) af—m) = —a(x), wEM(2,H),

©8) a(m) £ afn) = a[(£y £ 1) (m+nk 2 Vmn), mon>0; g, g are the charae-
teristie functions of a Jordan parfition of 2 relative to m—n.

The properties listed in Theorem 1, characterize (2, %) in the sense specified by
the following theorem.

'Thearem 2. If H is an Hilbert space and f:.#(02, #)— H is an homeomorphism
which satisfies conditions 1)-5) of Theorem 1, then there exists a unitary isomorphism
w2, H)—~ H.

The algebra L= (2, ) of bounded measurable real functions on (2, %) acts naturally
on J#(2,%#) by multiplication: M(f)(x) = f-.

* .
(*) Wo tend to interpret s/ as the algchra of (classical) observables and Aut (£2, #) as the group of
change of reference.

() 1. K. Swearn: Trans., Amer. Math. Soe., 81, 106 (1956).
(*) I&. NELSoN: preprint.
(*) ¥. Guprra, L, RoseN and B. SiMox: preprint.
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Theovem 3. The natural action of L®(Q, %) on .#(2,4) induces an action M of
this algebra on (2, %) which satisfies the following properties:

V M(j-g) = M(f)-Bg). [.geLl=(2,%),
2) M(af) =vi-M(f), ieR-, [el®(Q.3),

3) M(f+g¢) — M)+ M(g), if and only if jLg,

4) éﬁe'ﬂzf(f;) = —ﬁ[{(gsl‘\/ﬁf}z—{(ﬁ; S"\/ﬁ)_}z] for every keN, e,= 4 1 and
[ ELL(R2,H), 1< 1<k .

Each FI(f) is a linear, bounded operator on J#(Q2,%) and M(L™(2, %)=/ is a
Abelian algecbra.

Now for me.#(2,5), put

H (2, B) = Aa(®)],

i.e. A ,(£2,4B) is the norm-closure of the orbit of w(z) by the action of .o7.

Theorem 4.

'}/f:c(g:'@) = a(v/’v/m) ’

where .#, denotes the subspace of all measures y < x. Furthermore, the following
isomorphisms take place:

U, B) ~ LA, B, |v|) ~ LA 1,) »

where IL2(.o7; 7,) denotes the space obtained applying the Gelfand-Naimark-Segal
construction to the algebra o7 and the state a+—> (a(w); a-a{z)) (We suppose [lz]|=1).
In particular 5, coincides with 5, if and only if w~y; and 5, is orthogonal to A,
if and only if zy (*).

The group Aut (2,%) acts naturally on #(2, %) by means of the formula

Pa)=woT, Te Aut (2, 5) .

The operators T arve Markov operators in the sense of (!).

Theorem 5. The Markov action T of Aut (2, %) on J#(£2,%) induces a unitary
action 7' of this group on #(Q,%).

Proposition 6. The cross-product o7, & &, is the whole space B ).
Proposition 7. For every ze.#(2,9%) one has

T(‘%T) :";f?m L

(*) Thus the space # (2, B) depcnds only on the cquivalence class of x and is isomorphic to the
« intrinsie Hilbert space » of Mackey (7).
(") G.W.MAcCEEY: Mathematical Foundations of Quantum Mechanics (New York, 1963).
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in particular the subgroup @, which leaves 5, invariant is the image of the subgroup
of Aut (2,%) which leaves # quasi-invariant.

Let now (2,%) ~ (8 x G, BxP), where G is a countable group with a measurable
action U on (8,B). Let zeHH2,%) be an U-almost invariant measure and
ved (G, P) a bounded measure equivalent to the Haar measure on (. Denote by
R the right translation on . Then,

Proposilion 8. Congider the unitary tepresentation 7= U @ E defined on
A8 xE; BxP) as in Theorem 5 and the group K— (U@ R)(G). Let o7, denote the
Abelian von Neumann algebra which is the image of L®(§, B)—congidered as a sub-
algebra of L®(8xG; BxP) in the isomorphism defined in Theorem 3.

Then, the crossed product &7 & K iz isomorphic with the ring & obtained from
L¥S, B, x) and G applying the group-measure space construction (ef. (%)).

Conclusions. — The approach outlined here to the study of dynamical systems (i.e.
subgroups of Aut(Q,%)) is essentially a gencralization of the « Koopman program »
(ef. (%)), to which it reduces when one considers the restrietions of these groups on the
« fibers » H#,. It is also a natural context for the introduction of the ¢ Markov
property » and for the proof of an asseriion of vox NEumany. The proofs will be
reported elsewhere (1),

() J. DIXIMIER: Les algébres d’opfrateuwrs dans Uespace hilbertien (Paris, 1969).
() J. voNx NEUMANN: Collected Works, Vol. 2, p. 307.
(") L. Accarpi: On square rools of measures, in Proc. of the 1973 Varenna Swmmer School, to appear.




