ISSN 2070-04066. p-Adic Numbers, Ultrametric Analysis and Applications, 2012, Vol. 4, No. 2, pp. 89-101. @©) Pleiades Publishing, Ltd., 2012.

RESEARCH ARTICLES

Renormalization and Central Extensions*

Centro Vito Volterra, Universita di Roma Tor Vergata
via Columbia 2, 001353 Roma, ltaly
Received March 31, 2012

Abstract—The stochastic limit of quantum theory [ 1] motivated a new approach to the renormaliza-
tion program. Subsequent investigations brought to light unexpected connections with conformal
field theory and some subtle relationships between renormalization and central extensions. In the
present paper we review the path that has lead to these connections at the light of some recent
results.

DOI: 10.1134/8207004661202001X

Key words: renormalization, figher powers of white noise, central extensions.

Dedicated to lgor V. Volovich with [riendship and admiration for fils scientijfic acliievements

1. INTRODUCTION

The stochastic limit of quantum theory [1] has led to a multiplicity of developments in physics and
mathematics. In particular the quite nontrivial /identification of classical and guantum stochastic
equations with first order white noise Hamiltonian eqguations naturally rose the question of the
meaning of higher order white noise Hamiltonian equations.

Due to the identification of quantum white noise with the free Boson field (in momentum represen-
tation) this problem is equivalent to the problem of giving a meaning to nonlinear functions of the local
quantum fields, i.e. to the old standing renormalization problen:.

The equivalence of this problem with that of constructing a continuous arnalogue of the =Lie-
algebra of differential operators with polynomial coefficients acting on the space *(R”;C) and of its
unitary representations has been discussed in the paper|9]|(continuous analogue means that the space
R” = {lunctions {1, ..., 7} — R} is replaced by a space of test functions {iunctions R — R }).

In the present paper we will discuss the connections of this problem with that of central extensions of
#-Lie-algebras.

Since the simplest power higher that the first is the square, it was natural to choose this as the starting
point to attack the general problem.

In the case of finitely many degrees of freedom quadratic Hamiltonians are easily diagonlized by a
Boglyubov transformation but, as pointed out in the paper[16], when one tries to apply this technique to
the field case, a constraint appears in the form of an inequality which excludes the simplest example one
would like to be able to deal with: the square of the local quantum field, i.e. of classical white noise.

This remark convinced us that, for a successful attack the renormalization problem, a radically new
approach to the problem was required.

Such a new approach was proposed by Accardi, Lu and Volovich in the paper [15] and its basic new
idea can be formulated in the following problem:
first renormalize the Lie algebra structure (i.e. the commutation relations), thus obtaining a
new »-Lie algebra, then construct (nontrivial) Hilbert space representations.

In the same paper [15] the concrete realizability of the new approach was proved by explicitly
constructing #ze fock representation for the Renormalized Sguare of White Noise (RSWNV).
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90 ACCARDI, BOUKAS

2. QUADRATIC SECOND QUANTIZATION
Nowadays the theory of guadratic second guantization is rather well understood (see [14]) even if
the full picture is far from being complete.

The most interesting open problem concerning the quadratic case being is to enlarge the class of non
Fock representations of the Renormalized Square of White Noise (RSWN) #-Lie algebra. In fact there
are several indications that the class constructed in [13] constitutes a tiny fraction of the representations
that can be of interest for physics.

Since it illustrates well and in a simpler iramework the problems which arise in the higher powers
case, it is worth to quickly review the situation.

Recall that the usual commutation relations which define the non relativistic free Bose field on R?
*-Lie algebra are defined, in the sense of operator valued distributions on R?, by the generators:
— 4 annihilation densities
- 5; creation densities
satislying the commutation relations
(b, 8] = o2 —5), (8}, =[bnbs) =0; ()" =4 (1)

The Fock representation is characterized by the existence of a unit vector ®, called vacuum, satisiying
the condition

by = 0

(when no confusion is possible we often identily the densities ZJ?L, by with their images in a given
representation). The field operator is defined by

wy = 6; + &y

and its vacuum distribution identifies it with a classical white noise.
[T one applies formally (1) one finds the expression

(2,672 = 4d(t — 8) b6 by + 20(£ — 5)* (2)
which is not well defined, even as an operator valued distribution, because of the appearance of the term
ANt — 5)2.

Any rule to give a meaning to such an expression is called a renormalization rule.

Accardi, Lu and Volovich in [15] chose the following renormalization rule, first introduced by Ivanov
(for a discussion of its precise meaning see [20] and the survey paper[11]for other possibilities to give a
meaning to powers of the d-function):

() = c¢d(#) ; c—arbitrary constant. (3)

Using (3), the formal expression (2) and its analogue for the number density (which does not require
renormalization), become the renormalized commutation relation with renormalization constant
e

(2,672 = 2ed(¢ — 5)1 4+ 48(£ — 5)bT by (4)

2,6 6] = 20t — ) (5)
which now have a meaning in the sense of operator valued distributions.

Fixing the test function space to be the space of complex valued step functions on R with finitely
many values, the associated smeared commutation relations take the form:

(b5 5’;] = e, ) + npy
[, by = —2b5y
[725, &;;] = 26;/}
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(f};)Jr = by n:; = ng.

Accardi, Lu and Volovich in [15] proved that these commutation relations effectively define a #-Lie
algebra and that there exists a #-representation 7 of this »-Lie algebra on a Hilbert space % (see
[9] for the definition of this notion) uniquely characterized by the properties:

(i) There exists a unit vector & € 7 cyclic for the representation.

(i) For any choice of the test functions

ﬂp(é¢)¢ = ﬁp(ﬁ@;)‘i’ = 0.

Such representation was called 24¢ guadratic Fock representation.

The stochastic process associated to this representation is called the renormalized square of white
noise (RSWN).

3. CENTRAL EXTENSIONS AND RENORMALIZATION

The connections between central extensions and renormalization are very well illustrated by the

RSWN.

Recall that, given a complex Lie algebra Z, a Lie algebra Z is called a one-dimensional central
extension ol L with central element £ ii, as a vector space, Z is the direct sum of Z and C £ and
the Lie algebra structure on Z is uniquely determined by the prescriptions that, for all /1, 4 € Z, one has:

A, bl = A, bl + @4, b) £, (6)
{ZIJE]ZZO? (7)

where [-, |5 and [+, | ; are the Lie brackets in Zand Z, respectively, and ¢: £ x £ — C is a 2-cocycle on
Z,i.e. a bilinear form on Z satisfying the additional conditions:

Hh. k)= —@(lh,h)  (skew-symmetry ) (8)
A, bl ls) + Ao, blo, h) + A, 4, k) =0 (2-cocycle identity). (9)

It /1 £~ Cisalinear function and @ is defined by
Mo, b) = [[4. &L (10)

then ¢ is a 2-cocycle. A 2-cocycle of the form (10) is called a 2-cobourndary and the corresponding
central extension is called #Zrivial.
Fixing a set 7 ¢ R? with Lebesgue measure 1, denoting y/ its characteristic function (= 1 on 7 and
= 0 on its complement) and introducing the 1-mode sub-algebra of RSWN (see section (4.4.3) for a
more detained discussion):
5= by, Bt= 5;,; M= n,,
the RSWN commutation relations restricted to this sub-algebra become

(B, B =l + M,

(A7, B7) = =25,

where we denote 1 the central element.

Recalling that s/(2,R) is the real three-dimensional #-Lie algebra with generators {#*, Z~, A/} and
relations

(5=, 57 =M, M BT =425 (11)

(B7)* = BT, M= M

one recognizes that the 1-mode sub-algebra of RSWN is a central extension of s/(2, R).
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92 ACCARDI, BOUKAS

This central extension is trivial (like all those of s/(2,R) which is simple), but its role is essential
because without it, i.e. putting ¢ =0 in the RSWN commutation relations, the Fock representation
reduces to the zero representation. We then recognize two roles:

(i) The central extension which, even if trivial (but non zero), implies the non triviality of the Fock
representation.

(ii) The introduction of test functions, i.e. the transition from the 1-mode algebra to its second
quantization which, in the Lie algebra framework, manifests itsell as current algebra over R? of the
1-mode algebra.

The analysis of step (ii) has brought to light a new phenomenon consisting in an obstruction to the
existence of some special representations (generalizing in different ways the Fock one) occurring in the
transition from the one mode to the second quantized case. This obstruction manifests itsell in the fact
that certain kernels which are positive definite in the discrete case, lose this property in the transition to
the continuous case.

The non positive definiteness of certain kernels also occurs in the physical literature where it is
called emergernce of ghosts, however the two phenomena although probably related, are deeply different
because in the physical literature the emergence of ghosts takes place at the mode level and has a purely
algebraic root, while in the white noise literature the phenomenon only occurs in the transition from
discrete to continuum and its roots are measure theoretical, i.e. due to the non atomicity of the Lebesgue
measure (see [5] and references therein).

Now we consider separately these two aspects in the more general framework of the Renormalized
Higher Powers of White Noise (RHPWN) algebra.

4, THE WHITE NOISE #LIE ALGEBRAS

Starting from the first order commutation relations (1), the formal application of Leibniz’s rule to the

polynomial algebra generated by the creation and annihilation densities af;, as leads to expressions of the
form (see [12]):

7 N p- /4, 7 N—L o -
[a) af,ai a] = €10 €EN,0 E N az az aff [’a‘;‘ 8t — 5)

z>1 \ L
A Ly ¢V L w_p kol
— €X°0 €n,0 Z M al a, a, a0 (L — s), (12)
>1 \ L
where:
—n, k>0,

— Jp,4 s Kronecker’s delta

Engi=1— Jn,/c
2D =g(x—1) - (z—y+1); V=1 V=2 (13)

(2)y=a(z+1)-(z4+y—1); (2)o:=1; (2)):== (14)

are the decreasing and increasing factorials (Pochhammer symbols), respectively. As one can see, these
expressions involve formal powers of Dirac’s delta function.

To give a mathematical meaning to expressions such as (12), is equivalent to give a meaning to the
powers of the delta function.
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4.1. The =-Lie Algebra RPQW N,
Applying the following natural generalization of Ivanov’s renormalization prescription (3):

I = 7 A /=2,3,....: ¢ >0 arbitrary constant (15)
the smeared operators, heuristically defined by
Bfa = [ sod da (16)
satisfy the commutation and duality relations
(RANY V(K AR)
(BLS0. Bigidl = Y. Oln ke V&) B (o), (17)
=1
(BiS0)" = By( /o), (18)
where
£} oyt A o 0
Orn, by NV, K) = €0 e ME ND _ epei 600 M p
v L
and, here and in the following, we use the convention that, whenever & > 4,
b
> =o.
L=a

The following result shows that the above described renormalization rule does not destroy the *-Lie
algebra structure.

Theorem 1. (Accardi, Boukas [3/)

Lel S(RY) denole the Schwarlz space of rapidly decreasing smooth Junctions on RY. For any real
number ¢ >\, there exists a unigue x-Lie algebra with:
— generalors givern by

{BUS) = Bifid) + fFE€SRY); kyneNJ (19)

sucl that the maps f € S(RY) = LY [f) are complex linear Jor n > k, — Lie bracket defined by
(17),
— involution defined by (18).

This result allows to apply a natural extension of a standard procedure used in distribution theory, i.e.
to take the result of the formal manipulations described above as the definition of a new mathematical
object:

Definition 1. The %-Lie algebra defined in Theorem (1) will be called the Ivanov-Renormalized Powers
of Quantum White Noise Lie algebra with renormalization constant ¢and denoted Z2QW V..

4.2 The %-Lie Algebra RPQIW N, of Renormalized Higher Powers of White Noise with Convolution
Type Renormalization

Motivated by a detailed analysis of the no—go theorems, the following, convolution type, renormal-
ization was introduced by Accardi and Boukas in[3, 12] and [4]:
St —s)=ds)dt—5); [=2.3,.. (20)
where the distribution on the right hand side is is the usual convolution of distributions.
The new renormalization leads to the commutation relations:
(B9, BIS] = (bN = K n) BEL (9. (21)
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94 ACCARDI, BOUKAS

Theorem 2. (Accardi, Boukas [3/)

Let Sy(RY) denote the Schwartz space of rapidly decreasing smooth Junctions on R that vanish
al zero. There exists a unigue *-Lie algebra with:

— generalors givern by

(BU)) - fESRY; hneN (22)
such that the maps f € SRY) = B f) are complex linear for n > k, — Lie bracket defined by
(22),

— involution dejined by (78), i.e.
(BLN) = Bo(])-

Definition 2. The #-Lie algebra defined in Theorem (22) will be called the convolution-Renormalized
Powers of Quantum White Noise Lie algebra and denoted Z272QW V..

4.3. The1-Mode Reduction of the White Noise Algebras

By inspection of (17), (18) and (21) one verifies that, for any »-Lie sub-algebra either of ZPQW /V,
or of RPQW N, fixing an open set 7 ¢ R? | {0} with

/] := Lebesgue measure of 7 < oo (23)

and restricting the test function space to the single function
0 ifeérs
1 ilzel

Sz) = gla) = xi(z) ==

one obtains a #-Lie sub-algebra of the corresponding =-Lie algebra.
Notice that, for both #—Lie algebras, the generators with indices 7, £ satisiying the condition

n+k£>2

define a *-Lie sub-algebra of the corresponding #-Lie algebra. In the case of this sub-algebra, when /7
varies among all subsets of R? (R¥ | {0} in the case of ZPQIVN,) not necessarily satisfying condition
(23), the corresponding =-Lie algebras are isomorphic.

This defines the ore mode +-Lie algebra RPQW N,

(B8, B = (kN — K n) B, (24)

(B0)" = B,
5. THE CONFORMAL *-LIE ALGEBRAS

The conformal #-Lie algebras were introduced in conformal quantum field theory, as generalizations
of the Virasoro algebra, in the attempt to construct a quantum theory of gravity.

5.1. The ws, #-Lie Algebra

Generalizing previous results of A.B. Zamolodchikov, V.A. Fateev and S. Lukyanov, [18, 24|, Bakas
([17]) introduced the ., #-Lie algebra, defined by generators (Z?fg) where

& E T neN, n>2
with commutation and involution relations,
(B, B = (£(V =1) =K (n—1)) B g2 (25)
(Bg) - (26)

2-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS Vol.4 No.2 2012



RENORMALIZATION 95

Due to the relation

24+2-2=2
the set of generators
{Lp=15 : kel) (27)
defines a sub-#-Lie algebra of .
BB = k=) By e (BR) = B2p). (28)

In the notation (27) the commutation relations (28) take the form
(L Lic) = (k — K) Ly a5 (Za)" =L (29)

which defines the Witt (or centerless Virasoro) #-Lie algebra.

5.2, The W, #-Lie Algebra

Generalizing Bakas’ result, C.N. Pope, L.J. Romans and X. Shen, in the papers [23] (see also [22],
and [21])), Pope, Romans and Shen introduced the I, Lie algebra as the inductive limit of the family
of algebras ( J#y) which appear in conformal field theory (/753 is Zamolodchikov's algebra, see [24]).

W is a Lie algebra with generators (called corformial currernts)

(V7 nje€l,j>2) (30)
and commutation relations
(Vs VL = D dlfom, ) V35 m) b O, (31)
>0
where
ci(m) = m(m? —1)(m? —4) - (m? — (i + 1)) ¢ (32)

and the constants ¢, called cenzra/ c/iarpes are given by
220730 (7 4 2)!
(274 1)1 (27 + 3)!

(here, for an odd positive integer », the dowble Jacforial sign n!! denotes the product of all odd values
up to )

¢ (e € R arbitrary)

;=

1
2(/41)!

.. 1
N (mm) = 3 (~1)F (” : )

=0 k

g7 (m,n) = 7 N (m. )

X242 = D27+ 2 — ARG+ 1+ m) TG+ 1 + )R

_1/27 3/?7 _//Q - 1/2' _1/2
&y = a1

_Z'_1/2’ _j'_1/27 /+.7_/+5/27 _//2
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96 ACCARDI, BOUKAS

6. RENORMALIZED WHITE NOISE REPRESENTATION OF w,,

In the paper[6] Accardi and Boukas proved that the closures, in appropriate topologies, of the #-Lie-
algebras w~ and ZPQW NV, coincide.

The proof is constructive, giving explicit representations of the generators of each of the two #-Lie-
algebras in terms of infinite series of generators of the other one converging in the above mentioned
topology. The following result will be used in the present paper.

Theorem 3. /f t/ie higher powers of the della function are renormalized with the gerneralized
foanov renormalization prescription (15), then the QWN operators

' n—1
Bpyi= [ A0 A (o af) D (33)

where n, k €7 with n > 2, and the operators (35) satisty the involution condition (26 ) and the
commutalion relations
n—1 N—1

[Bn ] - Z Z jm! ?? A j\/ A’ )Bf{:}iﬂ(ﬂ?’); (34)

m=0 /=0
where by definition 1 := 1 and the remaining structure constants are given by (38).

Theorem 4. Lelfn > 2 and k € 7. Then, in the sense of Jormal series, Jor all lest Junctions [,

n—1 n—1—m oo

B;{ﬁ(ﬂzz Z Z nn—1 n—1—m

m=0 m’'=0 p,g=0 e 772
» ’ép‘i—q B/ﬂ '+ p '
x (—=1) T Gl k) By D), (35)
where
0 i m is odd
D¢, A) = =] ) 42 . )
(Jm 0+ €m, 01'[? o (m—2-1) Cmﬂ) e~ K72 ifmis even or zero

and the case k=0 (only p = g =0 surcives and we use° = 1) is interpreted as

n—1 n—1—m

—1 —1 =
mH= ¥ | T a0 By (),

m=0 m'=0 72 7

7. CONTRACTIONS OF =-LIE ALGEBRAS
Definition 3. A Tamily
((/Z,,?)cv,iTET

of structure constants, defining a Lie-algebra (or »—Lie—algebra) £ is called /ocally jnite if, for each
pair av, 7 € 7', one has:

Chs570

only for a finite number of » € 7" A set (4,) ez 0f generators of a x-Lie-algebra Lis called locally finite
if such is the associated family of structure constants.

Definition 4. Let /be a topological space and 7"be a set. A family of structure constants
{CZ:/J;(C) a4,y e Veel
defining a family of Lie—algebras (or *—Lie—algcbraq (L) ceris said to be convergent as ¢ — a if:
lim J (() Vo, 8,v €T (36)

c—cp aﬂ’

in the sense that the limit exists and defines the right hand side.
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[T this is the case it is not difficult to verify that also
{C‘Zﬁ:(k,[)’,'yéT}; Vee 7

is a family of structure constants of some Lie-algebra (or #-Lie-algebra) £.
Moreover, condition (36) implies that, if the family (C’;ﬁ(()) is locally finite, the same is true for the limit

family (63,3) because in the limit the family of nonzero structure constants can only decrease.

Definition 5. In the notations of Definition 4 the Lie-algebra (or #-Lie-algebra) £is called @ contrac-
tiorn of the family of Lie-algebras (or #-Lie-algebras) (£,).c7 as ¢ = a.

8. CONTRACTION OF CONFORMAL ALGEBRAS: W, — wx

C. N. Pope, L.J. Romans and X. Shen proved in [23] that by rescaling the generators of ¥, according
to the rule:

W}, — g Wy, (37)

where ¢ > 0 is a parameter, the w,, algebra can be obtained as a contraction of the /7, algebra, as
g — 0.

9. CONTRACTION OF WHITE NOISE ALGEBRAS
9.1. Contraction of BPQW N, to RPQW N, asc — 0
Theorem 5. RPQW N, is the contraction of the family (RPQWN,) .~y as ¢ — 0.

9.2. The Wx(c) Lie Algebras
In section (9.1) we have seen that the »-Lie-algebra Z7QI V, is a contraction of ZPQIW .V, as
c— 0.

Therefore, in view of the results of section (6) it is natural to conjecture that @, is the contraction, as
¢ — 0, of a family W (c), of x-Lie algebras contained in some natural closure of ZPQWV,.

Recently Accardi and Boukas have proved that this conjecture is true [2].

Theorem 6. foreach ¢ > 0 there exists a unigue »-1.ie algebra, hereafter denoted by W (c), with
generalors

(BUN = BUfid) s mk€l;n22; feSRY)
involution (26), i.e.

() - s
commultation relations (54), Le.
n—1 N—1
(B BED =D Bl b V, K 0) BEH (f9)
m=0 /=0

and structure constants given by
n—1 N =1

ﬂm,[(n: ky V, A C) = (1 - J(n—l—m)—{—(z\f’—l —[),0)
m /

v ((_1)?’2—??’2—1 - (_1)/\/'—1—1) A’#’V—l—lﬁw—m—l C;H—N—(m—}—[)—3_ (38)
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9.3. Contraction of (W(€))es0 0 s as ¢ — 0
Theorem 7. wx is the contraction of the family (W (€)oo as ¢ — Q.
Remark. The white noise representation of the w,, generators, introduced in [3] and [4] and based not

on the Ivanov renormalization, as here, but on the convolution type renormalization (20) of the powers
of the delta function, the QWN is

} n—1
) = [ oy ebtored (Z) S (39)

With these notations the structure constants become:

- 1 n—1 N -1
ﬁm,[(n: ky V, A C) = ot N2 (1 - J(n—l—m)—}-(jv—l—[),o) ;
7

% ((_1)n—m—1 i (_1)_]\/’—[—1) k/\/—l—lﬁw—m—l C,ﬂ-&—f\"'—(m-‘r/)—iﬁ_
Remark. The Witt algebra, the subalgebra of 17 (¢) generated by

B = [ Ay e (a4 df) e
JR

remains fixed during the expansion of w. to Wao(e).

10. CENTRAL EXTENSIONS OF ZQPIVNV,

[t is known (see[10]) that, with the exception of its Heisenberg algebra sector, 22V /V, admits no
nontrivial central extension. Precisely, the non-trivial central extensions of ZQPIW NV, are given by

(B, BR(9)] = (kN = K n) BRI (f9) + pelm ks N ) £,
where Z'is the (self-adjoint) central element and
P, iy V) = 0 00N,00k1 2+ Ong k0001 080 2
with 2 € C | {0} arbitrary.

The same is true, with the exception of its Virasoro algebra sector, for w., whose non-trivial central
extensions are given by

(BES), BiA9) = (k(V =1) = & (n = 1)) BEEE2(/9) + dn2 Oz s k(42 —1) B

where traditionally £'= -5, where ¢ > 0 is the “central charge”.

120
Remark. The factor o; ; d;,4 .0 is non zero only if
n= —m and i=7
which corresponds to the Sub—algcbras
V2,7 Z (1m2, —m) VQ(“’ gt e (m); JE{2,3,...} (40)

- m
/>0

of which the case 7 = 0 should correspond to Virasoro. This suggests that we look for central extensions
before taking the contraction ¢ — 0.

Remark. As shown in section (8) w,, can be obtained as a contraction of 7, as ¢ — 0. In this limit
only the Virasoro central extension survives and we obtain the w,, Lie algebra commutation relations
(25) and their Virasoro central extension in the form

[ D ; n[)] ( -7 + 1).’?7! - (3'+ ]).’?Z) VZH»?’JO + Em(}w2 )(5;':0(};‘;0(5;734»72,0
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which can be put in the form of (25) by defining
Gp e

m 72,0 *

Notice that the Witt-Virasoro algebra generators are

B2=1)

72 72,0
Remark. Letting
B = V;_Q; n, N=0,1,..

we see that the /77, commutation relations take the form

152, B0 =" g Y ke 1) BT 4 6, o (R) Gun i o (41)
>0
i.e.
157,57, =" gD gy BT g, o (k) (42)
/>0

while, for ¢, = 0, we have the non-centrally extended commutation relations

(7, 50 =" g (e ) BTN, (43)
>0

Remark. Letting 2/=7n —1 —mand Z= /N — 1 — /we see that the "(¢) commutation relations of
Theorem (3) can be put in the form

n—1 V-1
[BL) BRG = 3> Bualn ks N, &6 o) B~ 1), (44)
M=0 L=0
where
- . 72— 1 N —1
.-@n,l(n; &y IV, A C) = (1 - J(:rzfl797z)~|»(.e‘V717!),0) y
77

v ((71)7277??71 o (71)/\"7171) é,/\/'flflﬁ’nfmfl % Cﬂ+1\/7(m+[)73.
We notice that, due to the presence of the
((_1)?’2—7}2—1 . (_1)/\/'—1—1) _ ((_1)ﬂf . (_1)L)

factor, the only non-zero contribution to the commutator [/Z¢, %] comes from terms with A7, Z of
different even/odd parity which, in turn, implies that 47+ Z + 1 is always even. Therefore, just like in
W, the commutator contains only terms of the form

s+ N —2(/+1)
B;:—I—A’ 4

where we have set n+ NV — (M + L+ 1) = n+ NV —2(/+ 1) with /ranging from 0 to 2+ V — 2. We
may therefore write the 1#,.(¢) commutation relations (44) as

(B2 B =S bl ks VB ) BTV (fg), (45)
/>0
where
biln, ks NV, B ¢) = > Bar(n, b NV, K ). (46)

M Le{0,1,..,n—1}
M+ 7L =2/+1

2-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS  Vol.4 No.2 2012



100 ACCARDI, BOUKAS
In the one-mode case, i.e. over a fixed interval, commutation relations (45) become

152, B =" bylm, s NV K ) B Y. (47)
>0

Notice the similarity between the one-mode W,.(¢) commutation relations (47) and the non-centrally
extended 7, commutation relations (43). This similarity motivates the investigation of central exten-
sions of (). The lollowing section is devoted to this topic.

I1. CENTRAL EXTENSIONS OF J7x(¢)

Theorem 8. 7/e non-trivial central extensions of the Wy(c) commutation relations (#4) are
given by

(B B = bl ks VK ) BE L2V (F9) + Gy G o M —1) o, £) B,
>0
re.
B B = S bl by~ ) BV (fg) + k(AR 1) o(n, k) B, (48)
/>0

where, in the notation of (13) and (14),

n—1 (k—r;—1)A-2)
Hz‘:Ql W ik >0
o(n, k) = (49)

-1 &"F"ﬁ‘rl),_—,- 7
[ gt k<0

and ry = =2,1r9, 13, ..., I'y—1 are the rools of the facobi polynomiial
-1 i
Pgil_szrl)(—Qr— 1) =9FA1 —n1—ml,r+1)= Z (r4 1)~
=0 v/
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